Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:57:38.083Z Has data issue: false hasContentIssue false

The Role of the Organic Component in the Mechanical Behavior of Biomineralized Composites

Published online by Cambridge University Press:  31 January 2011

George Mayer
Affiliation:
gmayer@u.washington.edu, University of Washington, Materials Science & Engineering, Box 352120, Seattle, Washington, 98195-2120, United States, 206-353-7015, 206-543-3100
Jason Zhou
Affiliation:
faethwur@gmail.com, University of Washington, Materials Science & Engineering, Seattle, Washington, United States
Get access

Abstract

The roles of minor organic layers in influencing the mechanical response of such biomineralized composites as mollusk shells and sponge spicules have been investigated. The mechanisms whereby such minor constituents govern energy dissipation in rigid biomineralized structures are discussed, and a rationale for new modes of toughening that may relate more generally to families of ceramic- or glass/organic composites is offered. New results of simple torsional tests conducted on spicule fibers of a hexactinellid sponge, Euplectella aspergillum (Euplectella a.), compared with those done on melt-drawn glass fibers, showed an enhanced ability to resist failure in torsion, whereas the glass fibers did not. This behavior was attributed to the presence of a very thin adhesive viscoelastic phase between the siliceous layers of the spicule fibers, combined with the architectural and surface features of the spicule fiber.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Levi, C., Barton, J.L., Guillemet, C., LeBras, E., and Lehuede, P., Jl. Mat. Sci. Lett. 8:337 (1989).10.1007/BF00725516Google Scholar
2 Sarikaya, M., Fong, H., Sunderland, N., Flinn, B.D., Mayer, G., Mescher, A., and Gaino, E., Jl. Mater. Res. 16:1420 (2001).10.1557/JMR.2001.0198Google Scholar
3 Müller, W.E.G., Krasko, A., Pennec, G. Le, and Schroeder, H.C., Micros. Res. Tech. 62: 368 (2003).10.1002/jemt.10402Google Scholar
4 Aizenberg, J., Sundar, V.C., Yablon, A.D., Weaver, J.C., and Chen, G., Proc. Natl. Acad. Sci. USA 101:3358 (2004).10.1073/pnas.0307843101Google Scholar
5 Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P. Science, 309: 275 (2005).10.1126/science.1112255Google Scholar
6 Mayer, G., Trejo, R., Lara-Curzio, E., Rodriguez, M., Tran, K., Song, H., and Ma, W.H., Mat. Res. Soc. Sci. Symp. Proc. 844, 87 (2005).Google Scholar
7 Walter, S.L., Flinn, B.D., and Mayer, G., Mater. Sci. and Eng.-C 27: 570 (2007).10.1016/j.msec.2006.05.020Google Scholar
8 Mayer, G., Cer. Bull. 83: 9301 (2004).Google Scholar
9 Walter, S.L., Flinn, B.D., and Mayer, G., Acta Biomater, 3, 373 (2007).10.1016/j.actbio.2006.09.008Google Scholar
10 Müller, W.E.G., Wang, X., Kropf, K., Ushijima, H., Geurtsen, W., Eckert, C., Tahir, M.N., Tremel, W., Boreiko, A., Schlossmacher, U., Li, J., and Schröder, H.C., Jl. of Struct. Biol. 161: 188 (2008).10.1016/j.jsb.2007.10.009Google Scholar
11 Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A., J. Mater. Res. 16(9) 2485 (2001).10.1557/JMR.2001.0340Google Scholar
12 Jackson, A.P., Vincent, J.F.V., and Turner, R.M., Proc. Roy. Soc. Lond B 234(1277): 415 (1988).Google Scholar
13 Sarikaya, M., Liu, J., and Aksay, I.A., in: Biomimetics-Design and Processing of Materials, Sarikaya, M. and Aksay, I.A., (eds.) AIP Press, Woodbury, NY, p.50 (1975).Google Scholar
14 Mayer, G., Science 310: 1144 (2005).10.1126/science.1116994Google Scholar
15 Johnson, M., Walter, S.L., Flinn, B.D., and Mayer, G., submitted for publication (2009).Google Scholar
16 Sumitomo, T., Kakisawa, H., Owaki, Y., and Kagawa, Y., Materials Science Forum 561–565: 713 (2007).Google Scholar
17 Qi, H.J., Ortiz, C., and Boyce, M.C., Proc. Mater. Res. Soc. Symp. 874, L4.3.1 (2005).Google Scholar
18 Buehler, M.J., Atomistic Modeling of Materials Failure, Springer, New York, p.56 (2008).10.1007/978-0-387-76426-9Google Scholar