Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T19:16:26.789Z Has data issue: false hasContentIssue false

Spontaneous Oscillations During The Electrodeposition of Gold Thin Films

Published online by Cambridge University Press:  11 February 2011

Serge Ravaine
Affiliation:
Centre de Recherche Paul Pascal, C.N.R.S., Avenue A. Schweitzer, F-33600 Pessac, France
Raphaël Saliba
Affiliation:
Centre de Recherche Paul Pascal, C.N.R.S., Avenue A. Schweitzer, F-33600 Pessac, France
Christophe Mingotaud
Affiliation:
Centre de Recherche Paul Pascal, C.N.R.S., Avenue A. Schweitzer, F-33600 Pessac, France
Françoise Argoul
Affiliation:
Centre de Recherche Paul Pascal, C.N.R.S., Avenue A. Schweitzer, F-33600 Pessac, France
Get access

Abstract

The galvanostatic electrodeposition of two-dimensional (2D) gold films along the surface of aqueous hydrogen tetrachloroaurate solutions coated by a positively charged dimethyldioctadecylammonium (DODA) monolayer is reported. When a constant current is applied to the working electrode, a transition between two-dimensional (2D) growth and three-dimensional (3D) thickening of the deposits is observed. This event occurs when the current density is sufficiently small to allow the 3D process to consume all the injected electrical charges. The application of a current ramp with a rate such as the current density remains during the whole growth close to the limiting value separating the two growth regimes induces the appearance of spontaneous oscillations between the regimes of 2D and 3D growth. Deposits with a well-defined terraced structure are then obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schilardi, P. L., Marchiano, S. L., Salvarezza, R. C., Hernandez Creus, A. and Arvia, A. J., J. Electroanal. Chem. 431, 81 (1997).Google Scholar
2. Yang, J. and Fendler, J. H., J. Phys. Chem. 99, 5505 (1995).Google Scholar
3. Heywood, B. R. and Mann, S., Chem. Mater. 6, 311 (1994).Google Scholar
4. Henglein, A., Mulvaney, P. and Linnert, T., Faraday Discuss. 92, 31 (1991).Google Scholar
5. Zeiri, L., Efrima, S. and Deutsch, M., J. Phys. Chem. 101, 9757 (1997).Google Scholar
6. Meldrum, F. C., Kotov, N. A. and Fendler, J. H., Langmuir 10, 2035 (1994).Google Scholar
7. Younes, O., Zeiri, L., Efrima, S. and Deutsch, M., Langmuir 13, 1767 (1997).Google Scholar
8. Zeiri, L., Efrima, S. and Deutsch, M., Langmuir 12, 5180 (1996).Google Scholar
9. Nakabayashi, S., Aogaki, R., Karantonis, A., Iguchi, U., Ushida, K. and Nawa, M., J. Electroanal. Chem. 473, 54 (1999).Google Scholar
10. Luo, G. P., Ai, Z. M., Lu, Z. H. and Wei, Y., Phys. Rev. E 50, 409 (1994).Google Scholar
11. Luo, G. P., Yang, X. M. and Wei, Y., Y. Phys. Lett. A 192, 87 (1994).Google Scholar
12. Yi, K. C., Horvölgyi, Z. and Fendler, J. H., J. Phys. Chem. 98, 3872 (1994).Google Scholar
13. Tai, Z., Zhang, G., Qian, X., Xiao, S., Lu, Z. and Wei, Y., Langmuir 9, 1601 (1993).Google Scholar
14. Ravaine, S., Breton, C., Mingotaud, C. and Argoul, F., Mat. Sc. Eng. C 8–9, 437 (1999).Google Scholar
15. Zhao, X. and Fendler, J.H., J. Phys. Chem. 94, 3384 (1990).Google Scholar
16. Kotov, N. A., Zaniquelli, M. E., Meldrum, F. C. and Fendler, J. H., Langmuir 9, 3710 (1993).Google Scholar
17. Zeiri, L., Younes, O., Efrima, S. and Deutsch, M., J. Phys. Chem. B 101, 9299 (1997).Google Scholar
18. Saliba, R., Mingotaud, C., Argoul, F. and Ravaine, S., J. Electrochem. Soc. 148, C65 (2001).Google Scholar
19. Ravaine, S., Saliba, R., Mingotaud, C. and Argoul, F., Coll. Surf. A 198–200, 401 (2002).Google Scholar
20. Saliba, R., Mingotaud, C., Argoul, F. and Ravaine, S., J. Electrochem. Soc., accepted for publication.Google Scholar