Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T19:04:01.284Z Has data issue: false hasContentIssue false

Non Linear Optical Gain in Bulk Barrier Amorphous Silicon Phototransistor

Published online by Cambridge University Press:  17 March 2011

D. Caputo
Affiliation:
Department of Electronic Engineering, University of Rome “La Sapienza” via Eudossiana 18, 00184, Rome, Italy
G. de Cesare
Affiliation:
Department of Electronic Engineering, University of Rome “La Sapienza” via Eudossiana 18, 00184, Rome, Italy
A. Nascetti
Affiliation:
Department of Electronic Engineering, University of Rome “La Sapienza” via Eudossiana 18, 00184, Rome, Italy
F. Palma
Affiliation:
Department of Electronic Engineering, University of Rome “La Sapienza” via Eudossiana 18, 00184, Rome, Italy
Get access

Abstract

In this work we report studies on the non linear dependence of the optical gain with the incident power in an amorphous silicon bulk barrier phototransistor based on a n-i-p-i-n structure. The optical gain shows a quasi-hyperbolic dependence on the illumination intensity. The non-linear behavior was predicted by an analytical device model which takes into account the properties of both material and structure, which lead to the amplification mechanism of the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Guha, S., Yang, J., Banerjee, A., Sugiyama, S., Mat. Res. Soc. Symp. Proc., 507, p. 99, (1998).Google Scholar
[2] Rahn, J.T., Lemmi, F., Lu, J.P., Mei, P., Apte, R.B., Street, R.A., Lujan, R., Weisfield, R., Heanue, J., IEEE Trans. on Nucl. Science, 46, p. 457, (1999).Google Scholar
[3] Caputo, D., Cesare, G. de, Irrera, F., Palma, F., IEEE Trans. on Electron Devices, 43, p. 1351, (1996).Google Scholar
[4] Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Appl. Phys. Lett., 66, p. 1178, (1995).Google Scholar
[5] Bohm, M., Blecher, F., Eckahardt, A., Seibel, K., Schneider, B., Sterzel, J., Benthien, S., Keller, H., Lule, T., Rieve, P., Sommer, M., Uffel, B. van, Librecht, F., Lind, R.C., Humm, L., Efron, U., Roth, E., Mat. Res. Soc. Symp. Proc., 507, p. 327, (1998).Google Scholar
[6] Masini, G., Caputo, D., Cesare, G. de, Dobosz, A. and Palma, F., J. Non-Cryst. Solids, 164–166, p. 805, (1993).Google Scholar
[7] Street, R. A. in “Hydrogenated amorphous silicon”, Cambridge, Solid State Science Series, p. 135 (1991).Google Scholar
[8] Nascetti, A., Palma, F., Solid State Electronics, 42, p. 339, (1998).Google Scholar
[9] Masini, G., Cesare, G. de, Palma, F., J. Appl. Phys., 77, p. 1133, (1995).Google Scholar