Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T11:13:02.782Z Has data issue: false hasContentIssue false

Antimony Doped ZnO Nanorods - A Change From n to p Type?

Published online by Cambridge University Press:  01 February 2011

Joe Briscoe
Affiliation:
j.briscoe@cranfield.ac.uk, Cranfield University, Microsystems and Nanotechnology, Bedford, United Kingdom
Diego E. Gallardo
Affiliation:
deg27@cam.ac.uk, University of Cambridge, Physics, Cambridge, United Kingdom
Steve Dunn
Affiliation:
s.c.dunn@qmul.ac.uk, Queen Mary, University of London, Materials, London, United Kingdom
Get access

Abstract

The in-situ aqueous synthesis of ZnO nanorods doped with Sb is presented. To control the inclusion of Sb into the ZnO nanorods structure ethylene glycol (EG) is added to the reaction solution. The addition of EG reduces the rate at which Sb is included in the ZnO rods and produces nanorods with a morphology that is similar to the undoped rods. This is contrary to the rods produced with Sb in the absence of EG which produce a less well ordered structure. An I/V curve taken from individual rods indicates a change in the diode behaviour. The change in I/V behaviour is associated with a change from the natural n-type behaviour of ZnO to a p-type behaviour due to the Sb doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Aoki, T. Shimizu, Y. Miyake, A. Nakamura, A. Nakanishi, Y. and Hatanaka, Y. Phys. Status Solidi (B), 229, 911 (2002).Google Scholar
2 Limpijumnong, S. Zhang, S. B. Wei, S. H. and Park, C. H. Phys. Rev. Lett., 92, 155504–1 (2004).Google Scholar
3 Xiu, F. X. Yang, Z. Mandalapu, L. J. Zhao, D. T. Liu, J. L. and Beyermann, W. P. Appl. Phys. Lett., 87, 152101 (2005).Google Scholar
4 Kang, H. S. Kim, G. H. Kim, D. L. Chang, H. W. Ahn, B. D. and Lee, S. Y. Appl. Phys. Lett., 89, 181103 (2006).Google Scholar
5 Briscoe, J. Gallardo, D. E. and Dunn, S. Chem. Commun., 2009, 12731275 (2009).Google Scholar
6 Lin, C. C. Chen, H. P. and Chen, S. Y. Chem. Phys. Lett., 404, 30 (2005).Google Scholar
7 Sun, M. Zhang, Q. F. and Wu, J. L. J. Phys. D: Appl. Phys., 40, 3798 (2007).Google Scholar
8 Xiang, B. Wang, P. Zhang, X. Dayeh, S. A. Aplin, D. P. R. Soci, C. Yu, D. and Wang, D. Nano Lett., 7, 323 (2007).Google Scholar
9 Vayssieres, L. Adv. Mater., 15, 464 (2003).Google Scholar
10 Christian, P. and O'Brien, P., J. Mater. Chem., 15, 4949 (2005).Google Scholar
13 Govender, K. Boyle, D. S. Kenway, P. B. and O'Brien, P., J. Mater. Chem., 14, 2575 (2004).Google Scholar
14 Mandalapu, L. J. Xiu, F. X. Z. Yang and Liu, J. L. J. Appl. Phys., 102, 023716 (2007).Google Scholar