Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T06:04:22.968Z Has data issue: false hasContentIssue false

Pressure Tuning Spectroscopy of Mn2+ in Bulk and Nanocrystalline Sulfide Semiconductors

Published online by Cambridge University Press:  21 March 2011

Randy J. Smith
Affiliation:
Department of Chemistry, Washington State University, Pullman, WA 99164
Yongrong Shen
Affiliation:
Department of Chemistry, Washington State University, Pullman, WA 99164
Kevin L. Bray
Affiliation:
Department of Chemistry, Washington State University, Pullman, WA 99164
Get access

Abstract

We report the results of high pressure luminescence studies of the emission of Mn2+ in bulk Zn0.55Ga0.30S up to ∼214 kbar, bulk ZnS up to ∼184 kbar, and nanocrystalline ZnS (∼8 nm particle sizes) up to ∼300 kbar. We observed a strong redshift with pressure (-30(3) cm−1/kbar) for the 4T16A1 emission transition of Mn2+ in all three systems. We also observed emission quenching at high pressure in all three systems and attribute the quenching to a pressure induced phase change of the ZnS host lattice to a rocksalt (NaCl) phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrova, V., Draeseke, A., Tate, J., Yokoyama, T., Clark, B. L., and Keszler, D. A., Appl. Phys. Lett. 75, 2353 (1999).Google Scholar
2. Bhargava, R. N., Gallagher, D., Hong, X., and Nurmikko, A., Phys. Rev. Lett. 72, 416 (1994).Google Scholar
3. Li, D., Ph.D. thesis, Oregon State University, (1999).Google Scholar
4. Bol, A. A. and Meijerink, A., Phys. Rev. B 58, R15997 (1998).Google Scholar
5. Yu, I., Isobe, T., and Senna, M., J. Phys. Chem. Solids 57, 373 (1996).Google Scholar
6. Lippens, P. E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).Google Scholar
7. House, G. L. and Drickamer, H. G., J. Chem.. Phys. 67, 3230 (1977).Google Scholar
8. Samara, G. A. and Drickamer, H. G., J. Phys. Chem. Solids 23, 457 (1962).Google Scholar
9. Piermarini, G. J., Block, S., Barnett, J. D., and Forman, R. A., J. Appl. Phys. 46, 2774 (1975).Google Scholar
10. Ves, S., Schwarz, U., Christensen, N. E., Syassen, K., and Cardona, M., Phys. Rev. B 42, 9113 (1990).Google Scholar
11. Desgreniers, S., Beaulieu, L., and Lepage, I., Phys. Rev. B 61, 8726 (2000).Google Scholar
12. Jiang, J. Z., Gerward, L., Frost, D., Secco, R., Peyronneau, J., and Olsen, J. S., J. Appl. Phys. 86, 6608 (1999).Google Scholar
13. Qadri, S. B., Skelton, E. F., Dinsmore, A. D., Hu, J. Z., Kim, W. J., Nelson, C., and Ratna, B. R., J. Appl. Phys. 89, 115 (2001).Google Scholar