Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T02:30:01.677Z Has data issue: false hasContentIssue false

Positive Magnetisation in Carbon Nanoclusters Produced by High-Repetition-Rate Laser Ablation

Published online by Cambridge University Press:  21 March 2011

Andrei V. Rode
Affiliation:
The Australian National University, Canberra, 0200, Australia
Denis Arcon
Affiliation:
Institute Jozef Stefan, Ljubljana, 1000, Slovenia
Andrej Zorko
Affiliation:
Institute Jozef Stefan, Ljubljana, 1000, Slovenia
Zvonko Jaglicic
Affiliation:
University of Ljubljana, Ljubljana, 1000, Slovenia
Andrew G. Christy
Affiliation:
The Australian National University, Canberra, 0200, Australia
Nathan R. Madsen
Affiliation:
The Australian National University, Canberra, 0200, Australia
Barry Luther-Davies
Affiliation:
The Australian National University, Canberra, 0200, Australia
Desmond W. M. Lau
Affiliation:
RMIT University, Melbourne, 3000, Australia
Dougal G. McCulloch
Affiliation:
RMIT University, Melbourne, 3000, Australia
Get access

Abstract

Carbon nanoclusters produced by high-repetition-rate laser ablation of graphite and glassy carbon in Ar exhibits para- and ferromagnetic behaviour at low temperature. The results show that the degree of remanent order is strongly dependent on the magnetic history, i.e. whether the samples were cooled under zero-field or field conditions. Such behaviour is typical for a spin glass structure where the system can exist in many different roughly equivalent spin configurations. The spin-freezing temperature is unusually high (50–300 K) compared with ≤ 15 K for typical spin glasses. The maximum in the zero-field magnetic susceptibility experiments and their field dependence indicate that there is competition between ferromagnetic and antiferromagnetic exchange pathways, accounting for the spin glass behavior and/or a low-dimensionality of the system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Esquinazi, P., Spemann, D., Höhner, R., Setzer, A., Han, K.-H., Butz, T., Phys. Rev. Lett. 91, 227201 (2003).Google Scholar
[2] Esquinazi, P., Höhner, R., Han, K.-H., Spemann, D., Setzer, A., Diaconu, M., Schmidt, H., Butz, T., in: Carbon based magnetism, Eds. Makarova, T. L., Palacio, F. (Elsevier, Amsterdam, 2006), pp. 437462.Google Scholar
[3] Ohldag, H., Tyliszczak, T., Höhner, R., Spemann, D., Esquinazi, P., Ungureanu, M., Butz, T., Phys. Rev. Lett. 98, 187204 (2007).Google Scholar
[4] Lee, K. W., Lee, C. E., Phys. Rev. Lett. 97, 137206 (2006).Google Scholar
[5] Mathew, S., Satpati, B., Joseph, B., Dev, B. N., Nirmala, R., Malik, S. K., Kesavamoorthy, R., Phys. Rev. B 75, 075426 (2007).Google Scholar
[6] Amit Kumar, Avasthi, D. K., Pivin, J. C., Tripathi, A., Singh, F., Phys. Rev. B 74, 153409 (2006).Google Scholar
[7] Rode, A. V., Gamaly, E. G., Christy, A. G., Gerald, J. G. Fitz, Hyde, S. T., Elliman, R. G., Luther-Davies, B., Veinger, A. I., Androulakis, J., and Giapintzakis, J., Phys. Rev. B, 70, 054407 (2004).Google Scholar
[8] Arčon, D., Jagličič, Z., Zorko, A., Rode, A. V., Christy, A. G., Madsen, N. R, Gamaly, E. G., Luther-Davies, B., Phys. Rev. B, 74, 014438 (2006).Google Scholar
[9] Rode, A. V., Christy, A. G., Gamaly, E. G., Hyde, S. T., Luther-Davies, B., in: Carbon based magnetism, Eds. Makarova, T. L., Palacio, F. (Elsevier, Amsterdam, 2006), pp. 463482.Google Scholar
[10] Boukhvalov, D. W., Karimov, P. F., Kurmaev, E. Z., Hamilton, T., Moewes, A., Finkelstein, L. D., Katsnelson, M. I., Davydov, V. A., Rakhmanina, A. V., Makarova, T. L., Kopelevich, Y., Chiuzbian, S., Neumann, M., Phys. Rev. B, 69, 014438 (2006).Google Scholar
[11] Han, K.-H., Talyzin, A., Dzwilewski, A., Makarova, T. L., Höhne, R., Esquinazi, P., Spemann, D., Dubrovinsky, L. S., Phys. Rev. B, 72, 224424 (2005).Google Scholar
[12] Makarova, T. L., Sundqvist, B., Höhne, R., Esquinazi, P., Kopelevich, Y., Scharff, P., Davydov, V. A., Kashevarova, L. S., Rakhmanina, A. V., Nature 413, 716 (2001).Google Scholar
[13] Rode, A. V., Hyde, S. T., Gamaly, E. G., Elliman, R. G., McKenzie, D. R., and Bulcock, S., Appl. Phys. A 69, S755 (1999).Google Scholar
[14] Rode, A. V., Gamaly, E. G., and Luther-Davies, B., Appl. Phys. A, 70, 135 (2000).Google Scholar
[15] Luther-Davies, B., Kolev, V. Z., Lederer, M. J., Madsen, N. R., Rode, A. V., Giesekus, J., Du, K.-M., Duering, M., Appl. Phys. A 79, 10511055 (2004).Google Scholar
[16] Blinc, R. Arčon, D., Cevc, P., Pocsik, I., Koos, M., Trontelj, Z., Jagličič, Z., J.Phys. Cond. Mat. 10, 6813 (1998).Google Scholar
[17] Blinc, R., Cevc, P., Arčon, D., Zalar, B., Zorko, A., Apih, T., Milia, F., Madsen, N. R., Christy, A. G., Rode, A. V., Phys. Stat. Sol. (b) 243, 30693072 (2006).Google Scholar