Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T15:53:37.580Z Has data issue: false hasContentIssue false

Diffusion of Dendritic Polymers Through Concentrated Polymer Solutions

Published online by Cambridge University Press:  15 March 2011

James L. Thomas
Affiliation:
Department of Chemical Engineering, Columbia University, NY, NY
Wei Chen
Affiliation:
Department of Chemical Engineering, Columbia University, NY, NY
Yu Cheng
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ
Robert K. Prud'homme
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, NJ
Get access

Abstract

Diffusional dynamics of polymers can be very sensitive to polymer architecture. Polymers with novel (or time-varying) architectures could facilitate the release of therapeutic compounds from gels or concentrated polymer solutions with unusual or novel kinetic profiles. Towards this end, we are studying the behavior of model dendritic polymers, the poly(amidoamine)(PAMAM) dendrimers, in aqueous solutions and in concentrated solutions of a “matrix” polymer, poly(ethylene oxide)(PEO). Fluorescence measurements of the environmental polarity of the dendrimers provide evidence for pH-induced confomational changes in mid-sized (generation 6), but not in small (generation 2) dendrimers. In aqueous solution, dendrimer diffusion measurements reveal the fractal-like growth of these molecules, but measurements in aqueous PEO solutions failed to detect any pH dependence of the diffusion coefficient. Specific chemical interactions between the PEO and the PAMAM molecules may dominate their dynamic behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Siegel, R. A.; Falamarzian, M.; Firestone, B. A.; Moxlex, B. C. J. Controlled Release 1988, 8, 179182.Google Scholar
2) Langer, R. Nature 1998, 392 Suppl., 510.Google Scholar
3) Hoffman, A. S.; al., e. J. Biomed. Mat. Res. 2000, 577586.Google Scholar
4) Lodge, T. P.; Rotstein, N. A. J. Noncrystal. Solids 1991, 131, 671675 part 2.Google Scholar
5) Won, J.; Lodge, T. P. J. Polymer Sci. B 1993, 31, 18971907.Google Scholar
6) Bielinska, A.; Kukowska-Latallo, J.; Piehler, L. T.; Tomalia, D. A.; Spindler, R. R. Y.; Baker, J. R. J. Polymeric Materials Science and Engineering 1995, 73, 273274.Google Scholar
7) Kukowska-Latallo, J.; Bielinska, A.; Johnson, J.; Spindler, R.; Tomalia, D.; Baker, J. J. Proc. Natl. Acad. Sci. USA 1996, 93, 48974902.Google Scholar
8) Haensler, J.; Szoka, F. Bioconjugate Chem. 1993, 4, 372379.Google Scholar
9) Wiwattanapatapee, R.; Carreno-Gomez, B.; Malik, N.; Duncan, R. Pharm. Res. 2000, 17, 991998.Google Scholar
10) deGennes, P. G.; Hervet, H. J. J. Phys. Lett. (Paris) 1983, 44, L351–L360.Google Scholar
11) Lescanec, R.; Muthukumar, M. Macromolecules 1990, 23, 22802288.Google Scholar
12) Meltzer, A. D.; Tirrell, D. A.; Jones, A. A.; Inglefield, P. T.; Hedstrand, D. M.; Tomalia, D. A. Macromolecules 1992, 25, 45414548.Google Scholar
13) Boris, D.; Rubinstein, M. Macromolecules 1996, 29, 72517260.Google Scholar
14) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer J. 1985, 17, 117132.Google Scholar
15) Nisato, G.; Ivkov, R.; Amis, E. Macromolecules 2000, 33, 41724176.Google Scholar
16) deGennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, 1979.Google Scholar
17) Langevin, D.; Rondelez, F. Polymer 1978, 19, 875882.Google Scholar
18) Cukier, R. I. Macromolecules 1984, 17, 252255.Google Scholar
19) Altenberger, A. R.; Tirrell, M. J. Chem. Phys. 1984, 80, 22082213.Google Scholar