Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T18:46:13.266Z Has data issue: false hasContentIssue false

Echinoderm Faunas of the Hongguleleng Formation, Late Devonian (Famennian), Xinjiang-Uygur Autonomous Region, People's Republic of China

Published online by Cambridge University Press:  11 August 2017

N. Gary Lane
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington 47405, Department of Geology, State University of West Georgia, Carrollton 30118 and Kansas Geological Survey, University of Kansas, Lawrence 66047
Johnny A. Waters
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington 47405, Department of Geology, State University of West Georgia, Carrollton 30118 and Kansas Geological Survey, University of Kansas, Lawrence 66047
Christopher G. Maples
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington 47405, Department of Geology, State University of West Georgia, Carrollton 30118 and Kansas Geological Survey, University of Kansas, Lawrence 66047

Abstract

Famennian (Late Devonian) echinoderm faunas are poorly known on a global basis, although reasonably diverse faunas have been reported from England and Germany. We have collected a diverse (>500 specimens representing approximately 30 taxa) Famennian echinoderm fauna dominated by blastoids and inadunate, small-calyx camerate, and flexible crinoids from the Hongguleleng Formation, Junggar Basin, Xinjiang–Uygur Autonomous Region, People's Republic of China. Taxa reported here include five new genera and six new species of blastoids along with one new genus and 19 new species of crinoids. Blastoid taxa include Junggaroblastus hoxtolgayensis new genus and species, Orophocrinus devonicus new species, Xinjiangoblastus ornatus new genus and species, Uyguroblastus conicus new genus and species, Sinopetaloblastus jinxingae new genus and species, and Houiblastus devonicus new genus and species. Crinoid taxa include Uperocrinus zhaoae new species, ?Hexacrinites species, Agathocrinus junggarensis new species, Chinacrinus xinjiangensis new genus and species, ?C.nodosus new genus and species, C. species A, C. species B, C. species C, Eutaxocrinus chinaensis new species, E. boulongourensis new species, E. basellus new species, Forbesiocrinus inexpectans new species, Deltacrinus asiaticus new species, Bridgerocrinus minutus new species, B. delicatulus new species, Cosmetocrinus parvus new species, ?Pachylocrinus subpentagonalis new species, “Decadocrinus” constrictus new species, “D.elongatus new species, “D.” rugosus new species, “D.usitatus new species, “D.xinjiangensis new species, ?Graphiocrinus species, Holcocrinus asiaticus new species, and four species of inadunate crinoids that could not be assigned to genera. This fauna is more abundant and diverse than all other Famennian echinoderm faunas in the world combined, and it is critical in understanding echinoderm biogeography and evolution in the aftermath of the Late Devonian extinction event(s) prior to the Carboniferous echinoderm diversification. This echinoderm fauna is “Carboniferous” in affinity and indicates that echinoderm diversification and reradiation were well underway before the close of the Famennian.

Type
Research Article
Copyright
Copyright © 1997, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelin, N. P. 1878. Iconographia crinoideorum in stratis Sueciae Siluricis fossilium. Samson and Wallin, Stockholm, 62 p.Google Scholar
Ausich, W. I. 1986. Palaeoecology and history of the Calceocrinidae (Palaeozoic Crinoidea). Palaeontology, 29:8599.Google Scholar
Ausich, W. I., and Kammer, T. W. 1991. Systematic revisions to Aorocrinus, Dorycrinus, Macrocrinus, Paradichocrinus, Strotocrinus, and Uperocrinus: Mississippian camerate crinoids (Echinodermata) from the stratotype region. Journal of Paleontology, 65:936944.CrossRefGoogle Scholar
Ausich, W. I., and Meyer, D. L. 1988. Blastoids from the Late Osagean Fort Payne Formation (Kentucky and Tennessee). Journal of Paleontology, 62:269283.CrossRefGoogle Scholar
Austin, T., and Austin, T. Jr. 1842. XVIII—Proposed arrangement of the Echinodermata, particularly as regards the Crinoidea, and a subdivision of the Adelostella (Echinidae). Annals and Magazine of Natural History, series 1, volume 10, 63:291294.Google Scholar
Ausich, W. I., and Meyer, D. L. 1843. XXXIII—Description of several new genera and species of Crinoidea. Annals and Magazine of Natural History, series 1, volume 11:195207.Google Scholar
Bather, F. A. 1890. The classification of the Inadunata Fistulata (cont.). Annals and Magazine of Natural History, series 6, 5:485486.CrossRefGoogle Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science Report, 1898:916923.Google Scholar
Bather, F. A. 1900. The Echinodermata. The Pelmatozoa, v. 3, p. 7893. In Lankester, E. R. A Treatise on Zoology. Adam and Charles Black, London.Google Scholar
Beaver, H. H., Fay, R. O., Macurda, D. B. Jr., Moore, R. C., and Wanner, J. 1967. Blastoids, p. S298S455. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S: Echinodermata 1. Geological Society of America and The University of Kansas Press, Lawrence.Google Scholar
Breimer, A., and Joysey, K. A. 1968a. Anatomical studies of Orbitremites and Ellipticoblastus (Blastoidea) I. Proceedings of the Koninklijke Nederlandsche Akademie van Wetenschappen—Amsterdam, series B, 71:175190.Google Scholar
Breimer, A., and Joysey, K. A. 1968b. Anatomical studies of Orbitremites and Ellipticoblastus (Blastoidea) II. Proceedings of the Koninklijke Nederlandsche Akademie van Wetenschappen—Amsterdam, series B, 71:191202.Google Scholar
Breimer, A., and Macurda, D. B. Jr. 1972. The phylogeny of the fissiculate blastoids. Verhangelingen der Koninklijke Nederlandsche Akademie van Wetenschappen, Afdeeling Natuurkunde Eerste Reeks, Deel 26, no. 3, 390 p.Google Scholar
Brett, C. E. 1981. Systematics and paleoecology of Late Silurian (Wenlockian) Calceocrinids crinoids from New York and Ontario. Journal of Paleontology, 55:145175.Google Scholar
Broadhead, T. W. 1981. Carboniferous camerate crinoid Subfamily Dichocrininae. Sonder-Abdruck aus Palaeontographica, Abteilung A, 176, 157 p.Google Scholar
Brower, J. C. 1982. Phylogeny of primitive calceocrinids, p. 90110. In Sprinkle, J. (ed.), Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. The University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Casseday, S. A., and Lyon, S. S. 1862. Description of two new genera and eight new species of fossil Crinoidea from the rocks of Indiana and Kentucky. American Academy of Arts and Sciences, Proceedings, 5:1631.Google Scholar
Chi, Y.-S. 1943. A Lower Carboniferous blastoid from the Tushan district, Kueichou. Bulletin of the Geological Society of China, 23(3–4):111113.CrossRefGoogle Scholar
de Koninck, L. G., and Le Hon, E. 1854. Recherches sur les crinoides dur terrain Carbonifere de la Belgique. Memoir du le Academie Royale Belgique, volume 28, Memoir 3, 217 p.Google Scholar
D'Orbigny, A. D. 1849 [1850]. Prodrome du paléontologie stratigraphique universelle des animaux mollusques et rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphique, Volume 1, 392 p. Victor Masson, Paris.CrossRefGoogle Scholar
Dubatolova, Y. A. 1964. Morskikh liliy devona Kuzbassa. Akademie Nauk SSSR, Sibirsk Otdel Institut Geologii i Geofiziki, Trudy, 152 p.Google Scholar
Eichwald, C. E. D' (Eduard Von). 1857. Beitrag zur geographischen Verbreitutung der fossilien Thiere Russlands. Alte Periode. Klasse der Radiaten. Société impériale des naturalistes Moscou, Bulletin, 29:88127. [also listed as Bulletin Moskovsk Obshchestva Ispytatelei Prirody, 29:88–127.]Google Scholar
Etheridge, R. Jr., and Carpenter, P. H. 1886. Catalogue of the Blastoidea in the Geological Department of the British Museum (Natural History), with an account of the morphology and systematic position of the group, and a revision of the genera and species. British Museum, London, 322 p.Google Scholar
Fay, R. O. 1961. Blastoid Studies. The University of Kansas Paleontological Contributions 27, Echinodermata Article 3, 147 p.Google Scholar
Fay, R. O. 1964. An outline classification of the Blastoidea. Oklahoma Geology Notes, 24 (4):8190.Google Scholar
Follmann, O. 1887. Unterdevonische Crinoidean: Naturhistorische Verein Preussiche Rheinland, Verhandlungen, series 5, 4:113138.Google Scholar
Frest, T. J., and Strimple, H. L. 1977. Hirneacrinidae (new), simple Silurian camerate crinoids from the North American continental interior. Journal of Paleontology, 51:11811200.Google Scholar
Goldfuss, G. A. 1839. Beitrage zur Petrefaktenkunde. Verhandlungen der Leopoldinisch-Carolinischen Akademie der Naturforscher, 19:329364.Google Scholar
Goldring, W. 1923. The Devonian crinoids of the State of New York. New York State Museum Memoir 16, 670 p.Google Scholar
Goldring, W. 1935. Some Upper Devonian crinoids from New York. Annals of the Carnegie Museum, 24(164):337349.CrossRefGoogle Scholar
Goldring, W. 1936. Some Hamilton (Devonian) crinoids from New York. Journal of Paleontology, 10:1422.Google Scholar
Goldring, W. 1954. Devonian crinoids: new and old. New York State Museum Circular, 37:151.Google Scholar
Hall, J. 1862. Preliminary notice of some of the species of Crinoidea, known in the Upper Helderberg and Hamilton groups of New York. New York State Cabinet of Natural History Annual Report, 15:115153.Google Scholar
Hall, J. 1863. Preliminary notice of some species of Crinoidea from the Waverly sandstone series of Summit Co., Ohio, supposed to be of the age of the Chemung group of New York. New York State Cabinet of Natural History Annual Report, 17:5060.Google Scholar
Hall, J. 1882. Descriptions of the species of fossils found in the Niagara Group at Waldron, Indiana. Indiana Department of Geology and Natural History, Annual Report, 11:217345.Google Scholar
Horowitz, A. S., Macurda, D. B. Jr., and Waters, J. A. 1986. Polyphyly in the Pentremitidae (Blastoidea, Echinodermata). Geological Society of America Bulletin, 97:156161.2.0.CO;2>CrossRefGoogle Scholar
Hou, H.-F., Lane, N. G., Waters, J. A., and Maples, C. G. 1993 [1994]. Discovery of a new Famennian echinoderm fauna from the Hongguleleng Formation of Xinjiang, with redefinition of the formation. Stratigraphy and Paleontology of China, 2:118.Google Scholar
Jaekel, O. M. J. 1918. Phylogenie und System der Pelmatozoen. Palaontologische Zeitschrift, 3(1): 1128.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1993. Advanced cladid crinoids from the Middle Mississippian of the east-central United States: intermediate-grade calyces. Journal of Paleontology, 67:614639.CrossRefGoogle Scholar
Kesling, R. V. 1964. Decadocrinus hughwingi, a new Middle Devonian crinoid from the Silica Formation in northwestern Ohio. University of Michigan, Contributions of the Museum of Paleontology, 19:135142.Google Scholar
Kesling, R. V., and Strimple, H. L. 1971. Eutaxocrinus wideneri, a new flexible crinoid from the Middle Devonian Silica Formation of northwestern Ohio. University of Michigan, Contributions of the Museum of Paleontology, 23:291303.Google Scholar
Kier, P. M. 1952. Echinoderms of the Middle Devonian Silica Formation of Ohio. University of Michigan, Contributions of the Museum of Paleontology, 10:5981.Google Scholar
Kirk, E. 1941. Four new genera of Mississippian Crinoidea Inadunata. Journal of Paleontology, 15:8188.Google Scholar
Kirk, E. 1942. Rhopocrinus, a new fossil inadunate crinoid genus. United States National Museum Proceedings, 92:151155.CrossRefGoogle Scholar
Kirk, E. 1945. Holcocrinus, a new inadunate crinoid genus from the Lower Mississippian. American Journal of Science, 243:517521.CrossRefGoogle Scholar
Lane, N. G., Maples, C. G., Waters, J. A., and Marcus, S. A. 1995. Paleozoic echinoderms from China. Mid-American Paleontological Society (M. A. P. S.) Digest, 18 (4): 8497.Google Scholar
Lane, N. G., and Webster, G. D. 1966. New Permian crinoid fauna from southern Nevada. University of California Publications in Geological Sciences, 63:186.Google Scholar
Laudon, L. R. 1933. The stratigraphy and paleontology of the Gilmore City Formation of Iowa. Iowa University Studies in Natural History, 15:174.Google Scholar
Laudon, L. R. 1936. Notes on the Devonian crinoid fauna of the Cedar Valley Formation of Iowa. Journal of Paleontology, 10:6066.Google Scholar
Laudon, L. R. 1973. Two new crinoids from the Sappington Formation of Montana. Journal of Paleontology 47:447451.Google Scholar
Laudon, L. R., and Beane, B. H. 1937. The crinoid fauna of the Hampton Formation at Le Grand, Iowa. Iowa University Studies in Natural History, 17:227272.Google Scholar
Laudon, L. R., Parks, J. M., and Spreng, A. C. 1952. Mississippian crinoid fauna from the Banff Formation, Sunwapta Pass, Alberta. Journal of Paleontology, 27:505536.Google Scholar
Laudon, L. R., and Severson, J. L. 1953. New crinoid fauna: Mississippian Lodgepole Formation, Montana. Journal of Paleontology, 27:505536.Google Scholar
Le Menn, J. 1985. Les crinoides du Devonien inferieur et moyen du massif Armoricain. Memoires de la Societe Geologique et Mineralogique de Bretagne, no. 30, 268 p.Google Scholar
Li, Y. P., Sharps, R., McWilliams, M., Li, Y., Li, Q., and Zhang, W., 1991. Late Paleozoic paleomagnetic results from the Junngar block, northwestern China. Journal of Geophysical Research 96(B 10): 1604716060.CrossRefGoogle Scholar
Macurda, D. B. Jr. 1965. The functional morphology and stratigraphic distribution of the Mississippian blastoid genus Orophocrinus . Journal of Paleontology, 39:10451096.Google Scholar
Macurda, D. B. Jr. 1966a. The ontogeny of the Mississippian blastoid Orophocrinus . Journal of Paleontology, 40:92124.Google Scholar
Macurda, D. B. Jr. 1966b. The Devonian blastoid Belocrinus from France. Palaeontology, 9:244251.Google Scholar
Macurda, D. B. Jr., and Racheboeuf, P. R. 1975. Devonian and Carboniferous spiraculate blastoids from Brittany (France). Journal of Paleontology, 49:845855.Google Scholar
Maillieux, E. 1938. Le couvinien de l'Ardenne et ses faunes. Mémoires du Musé d'Histoire Naturelle de Belgique, 83:358.Google Scholar
Matsumoto, H. 1929. Outline of a classification of Echinodermata. The Science Reports of the Tohoku Imperial University, Sendai, Japan, series 2 (Geology), 13(2):2733. [p. 1–7 in separate]. Google Scholar
McKerrow, W.S., and Scotese, C. R., (eds). 1990. Palaeozoic Palaeogeography and Biogeography. The Geological Society of London Memoir 12:1435.Google Scholar
Meek, F. B., and Worthen, A. H. 1861. Description of new Palaeozoic fossils from Illinois and Iowa. Proceedings of the Academy of Natural Sciences, Philadelphia, Series 1, 13:128146.Google Scholar
Meek, F. B., and Worthen, A. H. 1865. Descriptions of new species of Crinoidea, etc. from the Carboniferous rocks of Illinois and some of the adjoining states. Proceedings of the Academy of Natural Sciences, Philadelphia, Series 1, 17:143155.Google Scholar
Meek, F. B., and Worthen, A. H. 1869. Descriptions of new Crinoidea and Echinoidea from the Carboniferous rocks of the western states, with a note on the genus Onychaster . Proceedings of the Academy of Natural Sciences, Philadelphia, 21:6783.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea or lily-shaped animals, with observations on the genera Asteria, Euryale, Comatula, and Marsupites. Bryan and Co., Bristol, England. 150 p.Google Scholar
Miller, S. A. 1890. The structure, classification, and arrangement of American Paleozoic crinoids into families. American Geologist, 6:275286, 340–357.Google Scholar
Miller, S. A. 1892. Palaeontology. Indiana Department of Geology and Natural Resources, 17th Annual Report (1891):611705. [Advance publication, 1891] Google Scholar
Moore, R. C. 1962. Revision of Calceocrinidae. The University of Kansas Paleontological Contributions. Echinodermata, Article 4, 40 p.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America, Special Paper 46, 153 p.CrossRefGoogle Scholar
Moore, R. C., Strimple, H. L., and Lane, N. G. 1978. Subclass Inadunata, Order Cladida, Suborder Poteriocrinina, 2:T630–T758. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata, Crinoidea. 3 volumes. Geological Society of America and The University of Kansas Press, Lawrence.Google Scholar
Mu, A. T. 1955. A Devonian blastoid from Kirin. Acta Palaeontologica Sinica 3(2): 131134.Google Scholar
Muller, J. 1856. Uber neue Crinoidean aus dem Eifeler Kalk. Kaiser Akademie Wissenschaft Berlin, Monatsbe, Volume 1:353356.Google Scholar
Munier-Chalmas, E-.C-.P-.A. 1876. Mollusques nouveaux des terrains paleozoiques des environs de Rennes. Journal Concyliologie, series 3, v. 16, whole volume 24, no. 1, p. 102109.Google Scholar
Münster, G. G. 1839–1846. Beschreibung einiger neuen Crinoideen aus der Uebergangs-formation. Beitrage zur Petrefacten-Kunde, 1:1124.Google Scholar
Ormiston, A. R., and Klapper, G., 1992. Paleoclimate, controls on Upper Devonian source rock sequences and stacked extinctions. Fifth North American Paleontological Convention Abstracts and Program, p. 227.CrossRefGoogle Scholar
Owen, D. D., and Schumard, B. F., 1850. Descriptions of fifteen new species of Crinoidea from the Subcarboniferous limestone of Iowa. Journal of the Academy of Natural Sciences, Philadelphia, series 2, 2:5770.Google Scholar
Phillips, J. 1841. Figures and descriptions of the Palaeozoic fossils of Cornwall, Devon, and West Somerset; observed in the course of the ordinance geological survey of that district. Longmans, Brown, Green, and Longmans, London, 232 p.Google Scholar
Ringueberg, E. N. S. 1886. New genera and species of fossils from the Niagara shales. Bulletin of the Buffalo Society of Natural Science, 5:122.Google Scholar
Roemer, C. F. 1851. Beitrage zur Kenntniss der fossilen Fauna des Devonischen Gebirges am Rhein. Naturhistorische Verein Preussische Rheinland und Westfalens, Verhandlungen, 8:357376.Google Scholar
Roemer, C. F. 1854. Erste Periode, Kohlen–Gebirge. In Bronn, H. G. (ed.), Lethaea Geognostica 1851–1856, 3rd ed., volume 2, 788 p. E. Scheizerbart, Stuttgart.Google Scholar
Roemer, F. A. 1866. Beitrage zur geologischen Kentniss des nordwestichen Herzgebirges. Palaeontographica 13:201213.Google Scholar
Rowley, R. R. 1903. Description of fossils, pts. 11–16, p. 98167. In Green, G. K. (ed.), Contributions to Indiana Palaeontology, volume 1. New Albany, Indiana.Google Scholar
Salter, J. W. 1873. A catalogue of the collection of Cambrian and Silurian fossils contained in the Geological Museum of the University of Cambridge. University Press, Cambridge, 204 p.Google Scholar
Sandberger, F. 1845. Kurze Bemerkungen zu der Schrift von F. A. Roemer: “Die Versteinerungen des Harz–Gebirges.” Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 13:427441.Google Scholar
Say, T. 1825. On two genera and several species of Crinoidea. Journal of the Academy of Natural Sciences of Philadelphia, series 1, 4 (2): 289296. [Reprinted in: Bulletins of American Paleontology, 1:347–354].Google Scholar
Schevchenko, T. V. 1967. Rannedevonskie morskie lilii semeystva Parahexacrinidae fam. nov. Zeravshanskogo khrebta. Paleontologiche Zhurnal, 3:7688.Google Scholar
Schmidt, W. E. 1932. Crinoideen und Blastoideen aus dem jungsten Unterdevon Spaiens. Palaeontographica, 76:134.Google Scholar
Schmidt, W. E. 1934. Die Crinoiden des Rheinischen Devons, Teil I, Die Crinoidean des Hunsruckschiefer. Preussische Geologische Landesant, Abhandlungen, neu series, 163:1149.Google Scholar
Schmidt, W. E. 1942. Die Crinoideen des Rheinischen Devons. Teil II. A. Nachtrag au: Die Crinoideen des Hunsruckschiefer. B. Die Crinoideen des Unterdevons bis zur Cultrijugatus–Zone (mit Ausschluss des Hunsruckschiefer). Reichstelle Bodenforschung, Abhandlungen, neu series, 182, 253 p.Google Scholar
Schmidt, W. E. 1952. Crinoides y Blastoideos del Devonica inferior de Asturias. Publicatione Alemana, Geologie Espana, 6:119182.Google Scholar
Schultze, L. 1867. Monographic der Echinodermen des Eifler Kalkes. Kaiser Akademie Wissenschaft, Berlin. Mathematic-naturwissenschaft Klasse, 26:113230.Google Scholar
Shumard, B. F. 1855. Description of new species of organic remains. Missouri Geological Survey, 2:185208.Google Scholar
Slocom, A. W. 1907. New crinoids from the Chicago area. Field Columbian Museum, Publication 123, Geology Series, 2(10):273306.Google Scholar
Springer, F. 1906. Discovery of the disk of Onychocrinus, and further remarks on the Crinoidea Flexibilia. Journal of Geology, 14:467523.CrossRefGoogle Scholar
Springer, F. 1913. Crinoidea 2, 1:173–243. In von Zittel, K. A. (ed.), (Eastman, C. R., transl. and ed.). Textbook of paleontology. Macmillan and Co., Ltd., London.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution, Publication 2501, 486 p.Google Scholar
Steininger, J. 1849. Die versteinerungen des Uebergangs–Gebirges der Eifel. Jahresbericht über den Schul-Cursus 1848/49 an dem Gymnasium zu Trier, p. 150.Google Scholar
Steininger, J. 1853. Geognostische beschreibung der Eifel. Fr. Lints, Trier, 143 p.CrossRefGoogle Scholar
Strimple, H. L. 1967. Aphelecrinidae, a new family of inadunate crinoids. Oklahoma Geology Notes, 27:8185.Google Scholar
Thomas, A. O. 1924. Echinoderms of the Iowa Devonian. Iowa Geological Survey, 29:385552.CrossRefGoogle Scholar
Ulrich, E. O. 1886. Remarks upon the names Cheirocrinus and Calceocrinus, with descriptions of three new generic terms and one new species. Minnesota Geological and Natural History Survey, Annual Report 14:104113.Google Scholar
Van sant, J. F., and Lane, N. G. 1964. Crawfordsville (Indiana) crinoid studies. University of Kansas, Paleontological Contributions, Echinodermata, Article 7, 136 p.Google Scholar
Von Seebach, K. 1864. Ueber Orophocrinus, ein neues Crinoideengeschlecht aus der Abtheilung der Blastoideen. Göttingen, Nachrichten von der Königliche Gesellschaft Wiss und der Georg-Augusts-Universität, Georg-Augusts-Universität for 1864–1876, 5:110111.Google Scholar
Wachsmuth, C., and Springer, F. 1880. Revision of the Palaeocrinoidea, part 1. The families Ichthyocrinidae and Cyathocrinidae. Academy of Natural Sciences, Philadelphia, Proceedings for 1879:226378.Google Scholar
Wachsmuth, C., and Springer, F. 1881. Revision of the Palaeocrinoidea, part 2. Family Sphaeroidocrinidae, with the sub-families Platycrinidae, Rhodocrinidae, and Actinocrinidae. Academy of Natural Sciences, Philadelphia, Proceedings for 1880:175411.Google Scholar
Wachsmuth, C., and Springer, F. 1885. Revision of the Palaeocrinoidea, part 3, sec. 1. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Academy of Natural Sciences, Philadelphia, Proceedings for 1884:223364.Google Scholar
Wachsmuth, C., and Springer, F. 1886. Revision of the Palaeocrinoidea, part 3, sec. 2. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Academy of Natural Sciences, Philadelphia, Proceedings for 1885:64226.Google Scholar
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Harvard College Museum Comparative Zoology Memoir, volumes 20–21, 897 p.Google Scholar
Waters, J. A., and Horowitz, A. S. 1993. Ordinal level evolution in the Blastoidea. Lethaia, 26:207213.CrossRefGoogle Scholar
Webby, B. D. 1961. A Middle Devonian inadunate crinoid from West Somerset, England. Palaeontology, 4:538541.Google Scholar
Webster, G. D. 1976. A new genus of calceocrinoid from Spain with comments on mosaic evolution. Palaeontology 19:681688.Google Scholar
Weller, S. 1900. The paleontology of the Niagaran Limestone in the Chicago area, the Crinoidea. Chicago Academy of Sciences Bulletin 4, part 1 of the Natural History Survey, 153 p.Google Scholar
Whidborne, G. F. 1898. A monograph of the Devonian fauna of the south of England, volume 3, the fauna of the Marwood and Pilton beds. Palaeontological Society of London, 236 p.Google Scholar
Williams, H. S. 1882. New crinoids from the rocks of the Chemung period of New York State. Academy Natural Sciences, Philadelphia, Proceedings, p. 1734.Google Scholar
Worthen, A. H. 1882. Descriptions of fifty-four new species of crinoids from the Lower Carboniferous limestones and Coal Measures of Illinois and Iowa. Illinois State Museum Natural History, Bulletin 1, 38 p.Google Scholar
Wright, J. 1951. A monograph of the British Carboniferous Crinoidea. Memoirs of the Palaeontographical Society, London, vol. 1(3): 47102.CrossRefGoogle Scholar
Xu, I.-W. 1962. Caelocrinus—nouveau genre of crinoid of Middle Silurian age from the province of Sezuchuan. Acta Palaeontologica Sinica, 10:4554.Google Scholar
Xu, H.-I., Cai, C.-H., Liao, W.-H., and Lu, L.-C., 1990. The Hongguleleng Formation in Western Junggar and the boundary between the Devonian and the Carboniferous. Journal of Stratigraphy, v 14(4):292301. [in Chinese] Google Scholar
Yang, C.-C., and Chu, M.-T., 1965. A Lower Carboniferous blastoid from Daoxian (Taohsien), Hunan. Acta Palaeontologica Sinica, 13(2):370372.Google Scholar
Zhao, Z.-X. 1986. The conodonts from Hoboksar Formation of Aljiati Hill, northern Xinjiang. Xinjiang Shiyou Dizhi, 7(3):89107.Google Scholar
Zhao, Z.-X., and Wang, C.-Y., 1990. Age of the Hongguleleng Formation in the Junggar Basin of Xinjiang. Journal of Stratigraphy, 14(2): 145146. [in Chinese] Google Scholar
Von Zittel, K. A. 1895. Grundzuge der Palaeontologie (Palaeozoologie), 1st edition. R. Oldenbourg, Munich, 971 p.Google Scholar