Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T00:18:38.972Z Has data issue: false hasContentIssue false

Progress in triboelectric nanogenerators as self-powered smart sensors

Published online by Cambridge University Press:  16 May 2017

Nannan Zhang
Affiliation:
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
Changyuan Tao
Affiliation:
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
Xing Fan*
Affiliation:
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People’s Republic of China
Jun Chen*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
*
a) Address all correspondence to these authors. e-mail: foxcqdx@cqu.edu.cn
Get access

Abstract

Personal, multifunctional, and smart electronic devices/systems are indispensable components of the internet of things for modern information collection and exchange, which play a key role in facilitating the development of human civilization. Traditional technique for powering these sensor nodes mainly relies on batteries, which may not be favorable owing to the limited battery lifetime, large sensor population, wide distribution, as well as the potential of environmental detriment. Extricated from external power sources, triboelectric nanogenerators (TENGs) based active sensors have been extensively spread into a variety of fields for self-powered high-performance sensing, featured as being lightweight, extremely cost-effective, and environmentally friendly. In this article, current progress of TENGs as smart sensors for self-powered touch detection, vibration and acoustic sensing, biomedical applications, as well as human-machine interfacing, has been comprehensively reviewed, from aspects of materials usage, device fabrication to practical applications. The latest representative achievements regarding the TENG based self-powered sensing systems were also systematically presented. In the end, some perspectives and challenges for the TENG based self-powered smart sensors were also summarized.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Paul Muralt

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Wang, Z.L., Lin, L., Chen, J., Niu, S., and Zi, Y.: Triboelectric Nanogenerators (Springer International Publishing, Switzerland, 2016).Google Scholar
Wang, Z.L.: On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 20(2), 74 (2017).Google Scholar
Wang, Z.L.: Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280 (2012).Google Scholar
Wang, S., Lin, L., and Wang, Z.L.: Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436 (2014).Google Scholar
Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.H., Su, Y., Bai, P., Wen, X., and Wang, Z.L.: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7(10), 9461 (2013).CrossRefGoogle ScholarPubMed
Wu, Y., Jing, Q., Chen, J., Bai, P., Bai, J., Zhu, G., Su, Y., and Wang, Z.L.: A self-powered angle measurement sensor based on triboelectric nanogenerator. Adv. Funct. Mater. 25(14), 2166 (2015).Google Scholar
Yang, Y., Zhang, H., Chen, J., Lee, S., Hou, T.C., and Wang, Z.L.: Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6(12), 1744 (2013).CrossRefGoogle Scholar
Su, Y., Chen, J., Wu, Z., and Jiang, Y.: Low temperature dependence of triboelectric effect for energy harvesting and self-powered active sensing. Appl. Phys. Lett. 106(1), 013114 (2015).Google Scholar
Zhang, B., Chen, J., Lin, L., Deng, W., Zhang, L., Zhang, H., Zhu, M., Yang, W., and Wang, Z.L.: Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 10(6), 6241 (2016).Google Scholar
Zhou, Y., Zhu, G., Niu, S., Liu, Y., Bai, P., Jing, Q., and Wang, Z.L.: Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719 (2014).Google Scholar
Wang, S., Lin, Z., Niu, S., Lin, L., Xie, Y., Pradel, K., and Wang, Z.L.: Motion charged battery as sustainable flexible-power-unit. ACS Nano 7(12), 11263 (2013).Google Scholar
Zi, Y., Lin, L., Wang, J., Wang, S., Chen, J., Fan, X., Yang, P.K., Yi, F., and Wang, Z.L.: Triboelectric–pyroelectric-piezoelectric hybrid cell for high-efficient energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 340 (2015).Google Scholar
Han, M., Zhang, X., Sun, X., Meng, B., Liu, W., and Zhang, H.: Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system. Sci. Rep. 4(4), 4811 (2014).Google Scholar
Fan, F., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L.: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109 (2012).Google Scholar
Wang, Z.L., Chen, J., and Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250 (2015).Google Scholar
Yeh, M.H., Lin, L., Yang, P., and Wang, Z.L.: Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 9(5), 4757 (2015).Google Scholar
Fan, F., Tian, Z., and Wang, Z.L.: Flexible triboelectric generator. Nano Energy 1(2), 328 (2012).Google Scholar
Wang, Z.L.: Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18(22), 3553 (2008).CrossRefGoogle Scholar
Bai, P., Zhu, G., Lin, Z., Jing, Q., Chen, J., Zhang, G., Ma, J., and Wang, Z.L.: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4), 3713 (2013).Google Scholar
Jin, L., Chen, J., Zhang, B., Deng, W., Zhang, L., Xu, L., Zhang, H., Huang, X., Zhu, M., Yang, W., and Wang, Z.L.: Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 10(8), 7874 (2016).Google Scholar
Zhang, N., Chen, J., Huang, Y., Guo, W., Yang, J., Du, J., Fan, X., and Tao, C.: A wearable all-solid photovoltaic textile. Adv. Mater. 28(2), 263 (2016).CrossRefGoogle ScholarPubMed
Yang, W., Liu, Z., Chen, J., Huang, L., Zhang, L., Pan, H., Wu, B., and Lin, Y.: A high-performance white-light-emitting-diodes based on nano-single crystal divanadates quantum dots. Sci. Rep. 5, 10460 (2015).Google Scholar
Bai, P., Zhu, G., Liu, Y., Chen, J., Jing, Q., Yang, W., Zhang, G., Ma, J., and Wang, Z.L.: Cylindrical rotating triboelectric nanogenerator. ACS Nano 7(7), 6361 (2013).Google Scholar
Hou, T.C., Yang, Y., Zhang, H., Chen, J., Chen, L.J., and Wang, Z.L.: Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2(5), 856 (2013).Google Scholar
Guo, H., Chen, J., Yeh, M.H., Fan, X., Wen, Z., Li, Z., Hu, C., and Wang, Z.L.: An ultra-robust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 9(5), 5577 (2015).Google Scholar
Zhu, G., Su, Y., Bai, P., Chen, J., Jing, Q., Yang, W., and Wang, Z.L.: Harvesting water wave energy by asymmetric screening of electrostatic charges on nanostructured hydrophobic thin-film surfaces. ACS Nano 8(6), 6031 (2014).CrossRefGoogle Scholar
Su, Y., Wen, X., Zhu, G., Yang, J., Chen, J., Bai, P., Wu, Z., and Wang, Z.L.: Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 9(9), 186 (2014).CrossRefGoogle Scholar
Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., and Wang, Z.L.: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7(8), 7342 (2013).Google Scholar
Yang, W., Chen, J., Zhu, G., Wen, X., Bai, P., Su, Y., Lin, Y., and Wang, Z.L.: Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 6(12), 880 (2013).Google Scholar
Kuang, S., Chen, J., Cheng, X.B., Zhu, G., and Wang, Z.L.: Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy 17, 10 (2015).Google Scholar
Zhu, G., Bai, P., Chen, J., Jing, Q., and Wang, Z.L.: Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy 14, 126 (2015).Google Scholar
Chen, J., Huang, Y., Zhang, N., Zou, H., Liu, R., Tao, C., Fan, X., and Wang, Z.L.: Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016).Google Scholar
Yang, J., Chen, J., Yang, Y., Zhang, H., Yang, W., Bai, P., Su, Y., and Wang, Z.L.: Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater. 4(6), 590 (2014).Google Scholar
Yang, W., Chen, J., Jing, Q., Yang, J., Wen, X., Su, Y., Zhu, G., Bai, P., and Wang, Z.L.: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 24(26), 4090 (2014).Google Scholar
Park, S., Kim, H., Vosgueritchian, M., Cheon, S., Kim, H., Koo, J., Kim, T., Lee, S., Schwartz, G., Chang, H., and Bao, Z.: Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26(43), 7324 (2014).Google Scholar
Zhong, J., Zhu, H., Zhong, Q., Dai, J., Li, W., Jang, S., Yao, Y., Henderson, D., Hu, Q., Hu, L., and Zhou, J.: Self-powered human-interactive transparent nanopaper systems. ACS Nano 9(7), 7399 (2015).Google Scholar
Zhu, G., Chen, J., Zhang, T., Jing, Q., and Wang, Z.L.: Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5(3), 3426 (2014).Google Scholar
Bai, P., Zhu, G., Jing, Q., Wu, Y., Yang, J., Chen, J., Ma, J., Zhang, G., and Wang, Z.L.: Transparent and flexible barcode based on sliding electrification for self-powered identification systems. Nano Energy 12, 278 (2015).Google Scholar
Chen, J., Yang, J., Guo, H., Li, Z., Zheng, L., Su, Y., Wen, Z., Fan, X., and Wang, Z.L.: Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 9(12), 12334 (2015).Google Scholar
Bae, J., Lee, J., Kim, S., Ha, J., Lee, B.S., Park, Y., Choong, C., Kim, J.B., Wang, Z.L., Kim, H.Y., Park, J.J., and Chung, U.I.: Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5, 4929 (2014).CrossRefGoogle ScholarPubMed
Shin, S.H., Kwon, Y.H., Kim, Y.H., Jung, J.Y., Lee, M.H., and Nah, J.: Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4), 4621 (2015).CrossRefGoogle ScholarPubMed
Jeong, C.K., Baek, K.M., Niu, S., Nam, T.W., Hur, Y.H., Park, D.Y., Hwang, G.T., Byun, M., Wang, Z.L., Jung, Y.S., and Lee, K.J.: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14(12), 7031 (2014).Google Scholar
Yang, Y., Zhang, H., Lee, S., Kim, D., Hwang, W., and Wang, Z.L.: Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett. 13(2), 803 (2013).Google Scholar
Yang, Y., Zhang, H., Liu, Y., Lin, Z., Lee, S., Lin, Z., Wong, C.P., and Wang, Z.L.: Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7(3), 2808 (2013).Google Scholar
Zhu, G., Bai, P., Chen, J., and Wang, Z.L.: Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2(5), 688 (2013).Google Scholar
Yang, Q., Liu, Y., Pan, C., Chen, J., Wen, X., and Wang, Z.L.: Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 13(2), 607 (2013).Google Scholar
Tang, W., Jiang, T., Fan, F.R., Yu, A.F., Zhang, C., Cao, X., and Wang, Z.L.: Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 25(24), 3718 (2015).Google Scholar
Meng, B., Cheng, X., Zhang, X., and Zhang, H.: Single-friction-surface triboelectric generator with human body conduit. Appl. Phys. Lett. 104(10), 103904 (2014).Google Scholar
Zhong, J., Zhong, Q., Hu, Q., Wu, N., Li, W., Wang, B., Hu, B., and Zhou, J.: Stretchable self-powered fiber-based strain sensor. Adv. Funct. Mater. 25(12), 1798 (2013).Google Scholar
Su, Y., Zhu, G., Yang, W., Yang, J., Chen, J., Jing, Q., Wu, Z., Jiang, Y., and Wang, Z.L.: Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS Nano 8(6), 3843 (2014).Google Scholar
Wen, Z., Chen, J., Yeh, M.H., Guo, H., Li, Z., Fan, X., Zhang, T., Zhu, L., and Wang, Z.L.: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16, 38 (2015).Google Scholar
Li, Z., Chen, J., Zhou, J., Zheng, L., Fan, X., Wen, Z., Yu, C., and Wang, Z.L.: High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22, 548 (2016).Google Scholar
Yi, F., Lin, L., Niu, S., Yang, P.K., Wang, Z., Chen, J., Zhou, Y., Zi, Y., Wang, J., Liao, Q., Zhang, Y., and Wang, Z.L.: Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 25(24), 3688 (2015).CrossRefGoogle Scholar
Zhang, H., Yang, Y., Su, Y., Chen, J., Adams, K., Lee, S., Hu, C., and Wang, Z.L.: Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 24(10), 1401 (2014).Google Scholar
Jing, Q., Zhu, G., Bai, P., Xie, Y., Chen, J., Han, R.P.S., and Wang, Z.L.: Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 8(4), 3836 (2014).Google Scholar
Quan, Z., Han, C., Jiang, T., and Wang, Z.L.: Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6, 1501799 (2015).Google Scholar
Yu, R., Pan, C., Chen, J., Zhu, G., and Wang, Z.L.: Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 23(47), 5868 (2013).Google Scholar
Lin, Z., Cheng, G., Wu, W., Pradel, K.C., and Wang, Z.L.: Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. ACS Nano 8(6), 6440 (2014).Google Scholar
Zhang, H., Yang, Y., Su, Y., Chen, J., Hu, C., Wu, Z., Liu, Y., Wong, C.P., Bando, Y., and Wang, Z.L.: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2(5), 693 (2013).Google Scholar
Jiang, T., Zhang, L., Chen, X., Han, C., Tang, W., Zhang, C., Xu, L., and Wang, Z.L.: Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 9(11), 12562 (2015).Google Scholar
Fang, Y., Tong, J., Zhong, Q., Chen, Q., Chou, J., Luo, Q., Zhou, Y., Wang, Z.L., and Hu, B.: Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy 16, 301 (2015).Google Scholar
Chen, J., Yang, J., Li, Z., Fan, X., Zi, Y., Jing, Q., Guo, H., Wen, Z., Pradel, K.C., Niu, S., and Wang, Z.L.: Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 9(3), 3324 (2015).Google Scholar
Zhang, L., Zhang, B., Chen, J., Jin, L., Deng, W., Tang, J., Zhang, H., Pan, H., Zhu, M., Yang, W., and Wang, Z.L.: Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftop. Adv. Mater. 28(8), 1650 (2016).Google Scholar
Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y., Hu, Y., and Wang, Z.L.: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576 (2013).Google Scholar
Wang, X., Dong, L., Zhang, H., Yu, R., Pan, C., and Wang, Z.L.: Recent progress in electronic skin. Adv. Sci. 2, 1500129 (2015).Google Scholar
Niu, S., Liu, Y., Wang, S., Lin, L., Hu, Y., and Wang, Z.L.: Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184 (2013).Google Scholar
Zi, Y., Wang, J., Wang, S., Li, S., Wen, Z., Guo, H., and Wang, Z.L.: Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016).Google Scholar
Zhang, C., Zhang, Z., Yang, X., Zhou, T., Han, C., and Wang, Z.L.: Tribotronic phototransistor for enhanced photodetection and hybrid energy harvesting. Adv. Funct. Mater. 26(15), 2554 (2016).Google Scholar
Wu, C., Wang, X., Lin, L., Guo, H., and Wang, Z.L.: Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10(4), 4652 (2016).Google Scholar
Chun, J., Kim, J.W., Jung, W., Kang, C., Kim, S., Wang, Z.L., and Baik, J.M.: Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8(10), 3006 (2015).Google Scholar
Niu, S., Liu, Y., Chen, X., Wang, S., Lin, L., Hu, Y., and Wang, Z.L.: Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12, 760 (2015).Google Scholar
Zhong, J., Zhang, Y., Zhong, Q., Hu, Q., Hu, B., Wang, Z.L., and Zhou, J.: Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8(6), 6273 (2014).Google Scholar
Yeh, M., Guo, H., Lin, L., Wen, Z., Li, Z., Hu, C., and Wang, Z.L.: Rolling friction enhanced free-standing triboelectric nanogenerators and their applications in self-powered electrochemical recovery systems. Adv. Funct. Mater. 26(7), 1054 (2016).Google Scholar
Su, L., Zhao, Z., Li, H., Yuan, J., Wang, Z.L., Cao, G., and Zhu, G.: High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano 9(11), 11310 (2015).Google Scholar
Li, Z., Chen, J., Guo, H., Fan, X., Wen, Z., Yeh, M.H., Yu, C., Cao, X., and Wang, Z.L.: Triboelectrification enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 28(15), 2983 (2016).Google Scholar
Peng, W., Yu, R., He, Y., and Wang, Z.L.: Theoretical study of triboelectric-potential gated/driven metal-oxide-semiconductor field-effect transistor. ACS Nano 10(4), 4395 (2016).Google Scholar
Li, J., Zhang, C., Duan, L., Zhang, L., Wang, L., Dong, G., and Wang, Z.L.: Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 28(1), 106 (2016).Google Scholar
Wang, Z.L.: Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 176(11), 447 (2014).Google Scholar
Yang, W., Chen, J., Zhu, G., Yang, J., Bai, P., Su, Y., Jing, Q., Cao, X., and Wang, Z.L.: Harvesting energy from the natural vibration of human walking. ACS Nano 7(11), 11317 (2013).Google Scholar
Zheng, L., Cheng, G., Chen, J., Lin, L., Wang, J., Liu, Y., and Wang, Z.L.: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops and wind around the clock. Adv. Energy Mater. 5(12), 1501152 (2015).Google Scholar
Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., and Wang, Z.L.: Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7(9), 8266 (2013).CrossRefGoogle ScholarPubMed
Yang, Y., Zhang, H., Lin, Z., Liu, Y., Chen, J., Lin, Z., Zhou, Y., Wong, C.P., and Wang, Z.L.: A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6(11), 2429 (2013).Google Scholar
Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y., Jing, Q., Pan, C., and Wang, Z.L.: Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 13(3), 2282 (2013).Google Scholar
Zhu, G., Lin, Z., Jing, Q., Bai, P., Pan, C., Yang, Y., Zhou, Y., and Wang, Z.L.: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13(3), 847 (2013).Google Scholar
Zhang, X., Han, M., Wang, R., Zhu, F., Li, Z., Wang, W., and Zhang, H.: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13(3), 1168 (2013).Google Scholar
Zhu, G., Zhou, Y.S., Bai, P., Meng, X., Jing, Q., Chen, J., and Wang, Z.L.: A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788 (2014).Google Scholar
Zhu, G., Yang, W., Zhang, T., Jing, Q., Chen, J., Zhou, Y.S., Bai, P., and Wang, Z.L.: Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 14(6), 3208 (2014).Google Scholar
Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T.C., and Wang, Z.L.: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25(42), 6094 (2013).Google Scholar
Wang, S., Niu, S., Yang, J., Lin, L., and Wang, Z.L.: Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 8(12), 12004 (2014).Google Scholar
Hu, Y., Yang, J., Jing, Q., Niu, S., Wu, W., and Wang, Z.L.: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 7(11), 10424 (2013).Google Scholar
Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., and Wang, Z.L.: Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8(3), 2649 (2014).Google Scholar
Fan, X., Chen, J., Yang, J., Bai, P., Li, Z., and Wang, Z.L.: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 4236 (2015).Google Scholar
Bai, P., Zhu, G., Jing, Q., Yang, J., Chen, J., Su, Y., Ma, J., Zhang, G., and Wang, Z.L.: Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 24(37), 5807 (2014).CrossRefGoogle Scholar
Yang, J., Chen, J., Su, Y., Jing, Q., Li, Z., Yi, F., Wen, X., Wang, Z., and Wang, Z.L.: Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat attached anti-interference voice recognition. Adv. Mater. 27(8), 1316 (2015).Google Scholar
Yang, Y., Zhang, H., Lin, Z., Zhou, Y.S., Jing, Q., Su, Y., Yang, J., Chen, J., Hu, C., and Wang, Z.L.: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7(10), 9213 (2013).Google Scholar
Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., and Wang, Z.L.: Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 9(1), 105 (2015).Google Scholar
Yang, W., Chen, J., Wen, X., Jing, Q., Yang, J., Su, Y., Zhu, G., Wu, W., and Wang, Z.L.: Triboelectrification based motion sensor for human-machine interfacing. ACS Appl. Mater. Interfaces 6(10), 7479 (2014).Google Scholar
Lin, Z., Zhu, G., Zhou, Y., Yang, Y., Bai, P., Chen, J., and Wang, Z.L.: A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem., Int. Ed. 52(19), 5065 (2013).Google Scholar
Li, Z., Chen, J., Yang, J., Su, Y., Fan, X., Wu, Y., Yu, C., and Wang, Z.L.: β-Cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 8(3), 887 (2015).Google Scholar
Yang, X., Zhu, G., Wang, S., Zhang, R., Lin, L., Wu, W., and Wang, Z.L.: A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 5(11), 9462 (2012).Google Scholar
Niu, S., Wang, X., Yi, F., Zhou, Y., and Wang, Z.L.: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 16(1), 37 (2015).Google Scholar
Chen, J.: Triboelectric Nanogenerators (Georgia Institute of Technology, Atlanta, 2016).Google Scholar
Chen, J. and Wang, Z.L.: Triboelectric nanogenerators as an innovation on vibration energy harvesting and self-powered vibrational sensing. Joule (2017), in press.Google Scholar