Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T01:26:38.943Z Has data issue: false hasContentIssue false

Controls on fracture distribution in Cretaceous sedimentary rocks from the Isfahan region, Iran

Published online by Cambridge University Press:  25 May 2017

ALI FARZIPOUR SAEIN*
Affiliation:
Department of Geology, Faculty of Sciences, University of Isfahan, 8174673441 Isfahan, Iran
ZAHRA TAJMIR RIAHI
Affiliation:
Department of Geology, Faculty of Sciences, University of Isfahan, 8174673441 Isfahan, Iran
*
*Author for correspondence: a.farzipour@sci.ui.ac.ir

Abstract

In this study, relationships between fracture patterns, lithology, thickness, diagenetic processes and grain size are evaluated within Cretaceous sediments in two sections of Dizlu and Kolah Ghazi of Isfahan. This study area was selected based on its outcrops of different rock units and its well-developed tectonic fractures. The fracture patterns within stratigraphic units of these sections are studied using geometrical and statistical analyses. This study finds that variable fracture spacing and fracture spacing ratios can be affected by lithology, thickness, grain size of sediments and diagenetic processes. A study of fracture stratigraphy based on fracture pattern evaluation within different cropped-out sedimentary rocks can be used to improve understanding of the same types of sedimentary rock units below the surface or throughout other sedimentary basins. Consequently, this could improve information regarding storage and fluid flow pattern throughout sedimentary rocks in different regions, even for subsurface purposes.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghanabati, S. A. 2004. Geology of Iran. Geological Survey of Iran (GSI), Tehran, Iran, 586 pp. (in Farsi).Google Scholar
Al Kharusi, L. M. 2009. Correlation between high resolution sequence stratigraphy and fracture stratigraphy for enhanced fracture characteristic prediction. Ph.D. thesis, University of Miami, Florida. Published thesis.Google Scholar
Awdal, A. H., Braathen, A., Wennberg, O. P. & Sherwani, G. H. 2013. The characteristics of fracture networks in the Shiranish formation of the Bina Bawi Anticline, comparison with the Taq Taq field, zagros, Kurdistan, NE Iraq. Petroleum Geoscience 19, 139–55.CrossRefGoogle Scholar
Bai, T. X. & Pollard, D. D. 2000. Fracture spacing in layered rocks, a new explanation based on the stress transition. Journal of Structural Geology 22, 4357.CrossRefGoogle Scholar
Barbier, M., Hamon, Y., Callot, J. P., Floquet, M. & Daniel, J. M. 2012. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir, The Madison Formation (Sheep Mountain, Wyoming, U.S.A.). Marine and Petroleum Geology 29 (1), 5067.CrossRefGoogle Scholar
Barton, C. A. & Zoback, M. D. 1990. Self-similar distribution of macroscopic fractures at depth in crystalline rock in the Cajon Pass scientific drill hole. In Rock Joints (eds Barton, N. & Stephansson, O.), pp. 163–70. A. A. Balkema, Rotterdam.Google Scholar
Barton, C. A. & Zoback, M. D. 1992. Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass scientific drill hole. Journal of Geophysical Research 97, 5181–200.CrossRefGoogle Scholar
Bergbauer, S. & Pollard, D. D. 2004. A new conceptual fold–fracture model including pre-folding joints, based on the Emigrant Gap anticline, Wyoming. Geological Society of America Bulletin 116 (3/4), 294307.CrossRefGoogle Scholar
Bjorlykke, K. & Hoeg, K. 1997. Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Marine and Petroleum Geology 14 (3), 267–76.CrossRefGoogle Scholar
Bosworth, W., Khalil, S., Clare, A., Comisky, J., Abdelal, H., Reed, T. & Kokkoros, G. 2012. Integration of outcrop and subsurface data during the development of a naturally fractured Eocene carbonate reservoir at the East Ras Budran concession, Gulf of Suez, Egypt. In Advances in the Study of Fractured Reservoirs (eds Spence, G. H., Redfern, J., Aguilera, R., Bevan, T. G., Cosgrove, J. W., Couples, G. D. & Daniel, J. M.), pp. 333–59. Geological Society, London, Special Publication no. 374.Google Scholar
Bourne, S. J. 2003. Contrast of elastic properties between rock layers as a mechanism for the initiation and orientation of tensile failure under uniform remote compression. Journal of Geophysical Research 108 (B8), 2395.CrossRefGoogle Scholar
Cheng, Y. 2009. Boundary element analysis of the stress distribution around multiple fractures. Implications for the Spacing of Perforation Clusters of Hydraulically Fractured Horizontal Wells. SPE Eastern Regional Meeting, Charleston, WV, 2325 September.Google Scholar
Cooke, M. L., Simo, J. A., Underwood, C. A. & Rijken, P. 2006. Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sedimentary Geology 184, 225–39.CrossRefGoogle Scholar
Cooke, M. L. & Underwood, C. A. 2001. Fracture termination and step over at bedding interfaces due to frictional slip and interface opening. Journal of Structural Geology 23, 223–38.CrossRefGoogle Scholar
Corbett, K., Friedman, M. & Spang, J. 1987. Fracture development and fracture stratigraphy of Austin Chalk, Texas. American Association of Petroleum Geologists Bulletin 71 (1), 1728.Google Scholar
Couples, G. D. 2013. Geomechanical impacts on flow in fractured reservoirs. In Advances in the Study of Fractured Reservoirs (eds Spence, G. H., Redfern, J., Aguilera, R., Bevan, T. G., Cosgrove, J. W., Couples, G. D. & Daniel, J. M.), pp. 145–72. Geological Society, London, Special Publication no. 374.Google Scholar
Di Naccio, D., Boncio, P., Cirilli, S., Casaglia, F., Morettini, E., Lavecchia, G. & Brozzetti, F. 2005. Role of fracture stratigraphy on fracture development in carbonate reservoirs: Insights from outcropping shallow water carbonates in the Umbria–Marche Apennines, Italy. Journal of Volcanology and Geothermal Research 148, 98115.CrossRefGoogle Scholar
Durrast, H. & Siegesmund, S. 1999. Correlation between rock fabrics and physical properties of carbonate reservoir rocks. International Journal of Earth Sciences 88, 392408.Google Scholar
Edelbro, C. 2003. Rock mass strength: A review. Technical report, Lulea University of Technology, No. 2003:16, 92 pp.Google Scholar
Ellis, M. A., Laubach, S. E., Eichhubl, P., Olson, J. E. & Hargrove, P. 2012. Fracture development and diagenesis of Torridon Group Applecross Formation, near An Teallach, NW Scotland. Millennia of brittle deformation resilience. Journal of the Geological Society 3, 297310.CrossRefGoogle Scholar
Fabbri, O., Gaviglio, P. & Gamond, J. F. 2001. Diachronous development of master joints of different orientations in different lithological units within the same forearc basin deposits, Kyushu, Japan. Journal of Structural Geology 23, 239–46.CrossRefGoogle Scholar
Farzipour Saein, A., Tajmir Riahi, Z., Safaei, H. & Beygi, S. 2015. Structural studies of fractures and fracture stratigraphy of Cretaceous sediments, in the Isfahan region. Journal of Tectonics 1 (1), 3558 (in Farsi).Google Scholar
Ferrill, D. A. & Morris, A. P. 2008. Fault zone deformation controlled by carbonate fracture stratigraphy Balcones fault system, Texas. American Association of Petroleum Geologists Bulletin 92 (3), 359380.CrossRefGoogle Scholar
Fossen, H. 2010. Structural Geology. Cambridge University Press, London, 480 pp.CrossRefGoogle Scholar
Gale, J. F. W., Laubach, S. E., Marrett, R. A., Olson, J. E., Holder, J. & Reed, R. M. 2004. Predicting and characterizing fractures in dolostone reservoirs: using the link between diagenesis and fracturing. In The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs (eds Braithwaite, C. J. R., Rizzi, G. & Darke, G.), pp. 177–92. Geological Society of London, Special Publication no. 235.Google Scholar
Gillespie, P. A., Walsh, J. J., Watterson, J., Bonson, C. G. & Manzocchi, T. 2001. Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland. Journal of Structural Geology 23, 183201.CrossRefGoogle Scholar
Graham, B., Antonellini, M. & Aydin, A. 2003. Formation and growth of normal faults in carbonates within a compressive environment. Geology (Boulder) 31, 11–4.2.0.CO;2>CrossRefGoogle Scholar
Gross, M. R. 1993. The origin and spacing of cross joints: example from the Monterey Formation, Santa Barbara coastline, California. Journal of Structural Geology 5 (6), 737–51.CrossRefGoogle Scholar
Gross, M. R. 1995. Fracture partitioning: Failure mode as a function of lithology of the Monterey Formation of coastal California. Geological Society of America Bulletin 107 (7), 779–92.2.3.CO;2>CrossRefGoogle Scholar
Gross, M. R. 2003. Mechanical stratigraphy: the brittle perspective. Geological Society of America, Abstracts with Programs 35 (6), September, 641.Google Scholar
Gross, M. R., Fisher, M. P., Engelder, T. & Greenfield, R. J. 1995. Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA. In Fractography: Fracture Topography as a Tool in Fracture Mechanics and Stress Analysis (ed. Ameen, M. S.), pp. 215–33. Geological Society, London, Special Publications no. 92.Google Scholar
Gudmundsson, A. 2011. Rock Fractures in Geological Processes. Cambridge University Press, New York: Cambridge University Press, 578 pp.CrossRefGoogle Scholar
Hanks, C. L., Lorenz, J., Teufel, L. & Krumhardt, A. P. 1997. Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, Northeastern Brooks Range and North Slope subsurface, Alaska. American Association of Petroleum Geologists Bulletin 81 (10), 1700–20.Google Scholar
Hatzor, Y. H. & Palchik, V. 1997. The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. International Journal of Rock Mechanics 34 (5), 805–16.CrossRefGoogle Scholar
Hooker, J. N., Gomez, L. A., Laubach, S. E., Gale, J. F. W. & Marrett, R. 2012. Effects of diagenesis (cement precipitation) during fracture opening on fracture aperture-size scaling in carbonate rocks. In Advances in Carbonate Exploration and Reservoir Analysis (eds Garland, J., Neilson, J., Laubach, S. E. & Whidden, K. J.), pp. 187206. Geological Society, London, Special Publications no. 370.Google Scholar
Huang, Q. & Angelier, J. 1989. Fracture spacing and its relation to bed thickness. Geological Magazine 126 (4), 355–62.CrossRefGoogle Scholar
Hudson, J. A. & Harrison, J. P. 1997. Engineering Rock Mechanics, An Introduction to the Principles. Oxford: Pergamon Press, 456 pp.Google Scholar
Hugman, R. H. H. & Friedman, M. 1979. Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. American Association of Petroleum Geologists Bulletin 63, 1478–89.Google Scholar
Iyer, K. & Podladchikov, Y. Y. 2009. Transformation-induced jointing as a gauge for interfacial slip and rock strength. Earth and Planetary Science Letters 280, 159166.CrossRefGoogle Scholar
Ji, S. & Saruwatari, K. 1998. A revised model for die relationship between joint spacing and layer thickness. Journal of Structural Geology 20 (11), 14951508.CrossRefGoogle Scholar
Karimzadeh, Z., Mehrabi, B. & Bazargani Gilani, K. A. 2015. Evaluation of the mineralization and formation of Pb-Zn ore deposit in Khaneh Surmeh (West of Isfahan), based on mineralogy, geochemistry and fluid inclusion evidences. Advanced Applied Geology 5, 7284 (in Farsi).Google Scholar
Ladeira, F. L. & Price, N. J. 1981. Relationship between spacing and bed thickness. Journal of Structural Geology 3, 179–83.CrossRefGoogle Scholar
LaPointe, P. R. & Hudson, J. A. 1985. Characterization and Interpretation of Rock Mass Joint Patterns. Geological Society of America, Special Publication no. 199.Google Scholar
Laubach, S. E. 2003. Practical approaches to identifying sealed and open fractures. American Association of Petroleum Geologists Bulletin 87 (4), 561–79.CrossRefGoogle Scholar
Laubach, S. E., Eichhubl, P., Hilgers, C. & Lander, R. H. 2010. Structural diagenesis. Journal of Structural Geology 32 (12), 1866–72.CrossRefGoogle Scholar
Laubach, S. E., Olson, J. E. & Gross, M. R. 2009. Mechanical and fracture stratigraphy. American Association of Petroleum Geologists Bulletin 93 (11) 1413–26.CrossRefGoogle Scholar
Lavenu, A. P. C., Lamarche, J., Salardon, R., Gallois, A. & Gauthier, B. D. M. 2012. Relating background fractures to diagenesis and rock physical properties in a platform–slope transect, example of Maiella Mountain (Central Italy). American Association of Petroleum Geologists Hedberg Conference, Fundamental Controls on Flow in Carbonates, July 8–13, Saint Cyr Sur Mer, Provence, France.Google Scholar
Lorenz, J. C., Farrell, H. E., Hanks, C. L., Rizer, W. D. & Sonnenfeld, M. D. 1997. Characteristics of natural fractures in carbonate strata, carbonate seismology. Geophysical Developments 6, 179203.Google Scholar
Lorenz, J. C., Teufel, L. W. & Warpinski, N. R. 1991. Regional fractures: I. A mechanism for the formation of regional fractures at depth in flat-lying reservoirs. American Association of Petroleum Geologists Bulletin 75, 1714–37.Google Scholar
McQuillan, H. 1973. Small-scale fracture density in Asmari formation of southwest Iran and its relation to bed thickness and structural setting. American Association of Petroleum Geologists Bulletin 57, 2367–85.Google Scholar
Memarian, H. 2009. Engineering Geology and Geotechnics. Tehran: University of Tehran Press, 953 pp. (in Farsi).Google Scholar
Mitra, S. 1988. Effects of deformation mechanisms on reservoir potential in Central Appalachian Over Thrust Belt. American Association of Petroleum Geologists Bulletin 75 (5), 536–54.Google Scholar
Muldoon, M. A. & Bradbury, K. R. 1998. Tracer study for characterization of groundwater movement and contaminant transport in fractured dolomite. Wisconsin Geological and Natural History Survey Open File Report, WOFR 1998–2, 45 pp.Google Scholar
Narr, W. & Suppe, J. 1991. Joint spacing in sedimentary rocks. Journal of Structural Geology 13, 1037–48.CrossRefGoogle Scholar
Nelson, R. A. 2001. Geologic Analysis of Naturally Fractured Reservoirs, 2nd edition. Houston: Gulf Professional Publishing, 352 pp.Google Scholar
Ogata, K., Senger, K., Braathen, A., Tveranger, J. & Olaussen, S. 2012. The importance of natural fractures in a tight reservoir for potential CO2 storage: a case study of the upper Triassic–middle Jurassic Kapp Toscana Group (Spitsbergen, Arctic Norway). In Advances in the Study of Fractured Reservoirs (eds Spence, G. H., Redfern, J., Aguilera, R., Bevan, T. G., Cosgrove, J. W., Couples, G. D. & Daniel, J. M.), pp. 394415. Geological Society, London, Special Publications no. 374.Google Scholar
Olson, J. E., Laubach, S. E. & Lander, R. L. 2007. Combining diagenesis and mechanics to quantify fracture aperture distributions and fracture pattern permeability. In Fractured Reservoirs (eds Lonergan, L., Jolley, R. J., Sanderson, D. J. & Rawnsley, K.), pp. 97112. Geological Society, London, Special Publications no. 270.Google Scholar
Olson, J. E., Laubach, S. E. & Lander, R. H. 2009. Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis. American Association of Petroleum Geologists Bulletin 93 (11), 1535–49.CrossRefGoogle Scholar
Ortega, O. J., Gale, J. F. W. & Marrett, R. 2010. Quantifying diagenetic and stratigraphic controls on fracture intensity in platform carbonates: an example from the Sierra Madre Oriental, northeast Mexico. Journal of Structural Geology 32, 1943–59.CrossRefGoogle Scholar
Ortega, O. J., Marrett, R. & Laubach, S. E. 2006. A scale-independent approach to fracture intensity and average fracture spacing. American Association of Petroleum Geologists Bulletin 90, 193208.CrossRefGoogle Scholar
Peacock, D. C. P. & Sanderson, D. J. 1993. Estimating strain from fault slip using a line sample. Journal of Structural Geology 15 (12), 1513–6.CrossRefGoogle Scholar
Peng, S. & Zhang, J. 2007. Engineering Geology for Underground Rocks. Berlin, Heidelberg, New York: Springer-Verlag, 319 pp.Google Scholar
Price, N. J. 1966. Fault and Joint Development in Brittle and Semi-Brittle Rock. Commonwealth and International Library, Geology Division. Pergamon Press, University of California, 176 pp.Google Scholar
Priest, S. D. 1993. Discontinuity Analysis for Rock Engineering. London, New York: Chapman and Hall, 473 pp.CrossRefGoogle Scholar
Priest, S. D. 2004. Determination of discontinuity size distributions from scan line data. Rock Mechanics and Rock Engineering 37, 347–68.CrossRefGoogle Scholar
Rotevatn, A. & Bastesen, E. 2012. Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): implications for the permeability structure along segmented normal faults. In Advances in the Study of Fractured Reservoirs (eds Spence, G. H., Redfern, J., Aguilera, R., Bevan, T. G., Cosgrove, J. W., Couples, G. D. & Daniel, J. M.), pp. 7995. Geological Society, London, Special Publications no. 374.Google Scholar
Ruf, J. C., Rust, K. A. & Engelder, T. 1998. Investigating the effect of mechanical discontinuities on joint spacing. Tectonophysics 295, 245–57.CrossRefGoogle Scholar
Safari, A. 2000. Facies and sedimentary environment of Lower Cretaceous rocks (Baremian-Albian) in North East of Isfahan. Research Journal of University of Isfahan ‘Science’ 13, 143–64 (in Farsi).Google Scholar
Schöpfer, M. P. J., Arslan, A., Walsh, J. J. & Childs, C. 2011. Reconciliation of contrasting theories for fracture spacing in layered rocks. Journal of Structural Geology 33, 551–65.CrossRefGoogle Scholar
Seyed-Emami, K., Brants, A. & Bozorgnia, F. 1971. Stratigraphy of the Cretaceous rocks southeast of Esfahan, Tehran, Iran. Geological Survey of Iran, report no. 20, 527.Google Scholar
Shackleton, R. J., Cooke, M. L. & Sussman, A. J. 2005. Evidence for temporally changing fracture stratigraphy and effects on joint–network architecture. Geology 33 (2), 101–4.CrossRefGoogle Scholar
Shaocheng, J., Zheming, Z. & Zichao, W. 1998. Relationship between joint spacing and bed thickness in sedimentary rocks: effects of inter bed slip. Geology and Magnetic 135 (5), 637–55.Google Scholar
Silliphant, L. J., Engelder, T. & Gross, M. R. 2002. The state of stress in the limb of the Split Mountain anticline, Utah: constraints placed by transacted joints. Journal of Structural Geology 24, 155–72.CrossRefGoogle Scholar
Singhal, B. B. S. & Gupta, R. P. 2010. Applied Hydrogeology of Fractured Rocks, second edition. Netherlands: Springer, 408 pp.CrossRefGoogle Scholar
Soliman, M. Y., East, L. & Adams, D. 2008. Geomechanics aspects of multiple fracturing of horizontal and vertical wells. SPE Drilling and Completion, September, 217–28.Google Scholar
Sonntag, R., Evans, J. P., La Pointe, P., Deraps, M., Sisley, H. & Richey, D. 2012. Sedimentological controls on the fracture distribution and network development in Mesaverde Group sandstone lithofacies, Uinta Basin, Utah, USA. In Advances in the Study of Fractured Reservoirs (eds Spence, G. H., Redfern, J., Aguilera, R., Bevan, T. G., Cosgrove, J. W., Couples, G. D. & Daniel, J. M.), pp. 2350. Geological Society, London, Special Publications no. 374.Google Scholar
Sorbi, A. 2002. Geological map of Isfahan Province. Geological Survey of Iran (GSI), Tehran, Iran, scale 1:1,000,000.Google Scholar
Tang, C. A., Liang, Z. Z., Zhang, Y. B., Chang, X., Tao, X., Wang, D. G., Zhang, J. X., Liu, J. S., Zhu, W. C. & Elsworth, D. 2008. Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling. American Journal of Science 308, 4972.CrossRefGoogle Scholar
Tucker, M. E. 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks, third edition. Oxford: Blackwell Scientific Publication, 260 pp.Google Scholar
Underwood, C. A. 1999. Stratigraphic controls on vertical fracture patterns within the Silurian dolomite of Door County, Wisconsin and implications for groundwater flow. M.Sc. thesis, University of Wisconsin-Madison, Wisconsin. Published thesis.Google Scholar
Underwood, C. A., Cooke, M. L., Simo, J. A., Muldoon, M. A. 2003. Stratigraphic controls on vertical fracture patterns in Silurian dolomite, northeastern Wisconsin. American Association of Petroleum Geologists Bulletin 87 (1), 121–42.Google Scholar
Van Golf-Racht, T. D. 1982. Fundamentals of Fractured Reservoir Engineering. Elsevier, Amsterdam, Developments in Petroleum Science no. 12, 732 pp.Google Scholar
Warpinski, N. R., Wolhart, S. L. & Wright, C. A. 2004. Analysis and prediction of microseismicity induced by hydraulic fracturing. SPE Journal, March, 2433.Google Scholar
Watkins, H., Butler, R. W. H., Bond, C. E. & Healy, D. 2015. Influence of structural position on fracture networks in the Torridon Group, Achnashellach fold and thrust belt, NW Scotland. Journal of Structural Geology 74, 6480.CrossRefGoogle Scholar
Wennberg, O. P., Svana, T., Azizzadeh, M., Aqrawi, A. M. M., Brockbank, P., Lyslo, K. B. & Ogilvie, S. 2006. Fracture intensity vs. fracture stratigraphy in platform top carbonates: The Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran. Petroleum Geoscience 12, 235–45.CrossRefGoogle Scholar
Wu, H. & Pollard, D. D. 1995. An experimental study of the relationship between joint spacing and layer thickness. Journal of Structural Geology 17 (6), 887905.CrossRefGoogle Scholar
Yale, D. P. & Jamieson, W. H. Jr. 1994. Static and dynamic properties of carbonates. In 1st North American Rock Mechanics Symposium, 1–3 June, Austin, Texas, 463–71.Google Scholar
Yazdi, M., Bahrami, A. & Vega, F. J. 2009. Albian decapod crustacean from Southeast Isfahan, Central Iran, Kolah Ghazi area. Bulletin of the Mizunami Fossil Museum 35, 71–7.Google Scholar
Yousefzadeh, F., Zamanian, H. & Makizadeh, M. A. 2012. Geochemistry studies of Dizlu Pb-Zn Deposit (North East Isfahan). In 31st Symposium of Geosciences, Geological Survey of Iran (GSI), Tehran, Iran. Available at: http://www.civilica.com/Paper-GSI31-GSI31_105.html (in Farsi).Google Scholar
Zahedi, M. 1978. Geological Map of Isfahan. Geological Survey of Iran (GSI), Tehran, Iran, Scale 1: 250,000, no. F8.Google Scholar
Zahm, C. K. & Hennings, P. H. 2009. Complex fracture development related to stratigraphic architecture: Challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming. American Association of Petroleum Geologists Bulletin 93, 1427–46.CrossRefGoogle Scholar
Zamanian, H., Ahmadnejad, F., Yousefzadeh, F. & Makizadeh, M. A. 2013. Geology and fluid inclusion studies of the Dizlu lead-zinc deposit, Isfahan, Central Iran. In 32nd National and the 1st International Geosciences Congress, Geological Survey of Iran (GSI), Tehran, Iran (in Farsi).Google Scholar
Zhang, L. 2005. Engineering Properties of Rocks. Amsterdam: Elsevier, 290 pp.Google Scholar