Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T19:51:53.067Z Has data issue: false hasContentIssue false

Structural nanocomposites for aerospace applications

Published online by Cambridge University Press:  08 October 2015

Emilie J. Siochi
Affiliation:
Advanced Materials and Processing Branch, NASA Langley Research Center, USA; emilie.j.siochi@nasa.gov
Joycelyn S. Harrison
Affiliation:
Air Force Office of Scientific Research, USA; joycelyn.harrison@us.af.mil
Get access

Abstract

Carbon nanotubes (CNTs) have captured the imagination of the research community because of their many superior properties. In the nearly 25 years since their novelty was recognized, however, progress toward their utility as superlightweight structural materials, especially for aerospace applications, has been disappointing. Recent advancements have revived some of the anticipation for the touted systems payoffs. The purpose of this article is to examine how close CNTs have come to fulfilling expectations for lightweight aerospace structures in the two decades since the initial report stimulated intense interest in this material. This article also proposes areas of study to bridge knowledge gaps that can realize the potential for these CNT composites to be part of the lightweight structures technology suite for aerospace use.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Harris, C.E., Starnes, J.H. Jr., Shuart, M.J., J. Aircraft 39, 545 (2002).CrossRefGoogle Scholar
Hale, J., AERO (Qtr. 4), 1623 (2006), available at http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/AERO_Q406.pdf (accessed August 2015).Google Scholar
Airbus, “Passenger Aircraft/A350 XWB/Technology,”http://www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily/technology-and-innovation/ (accessed April 2015).Google Scholar
Fenn, J., Raskino, M., Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time (Harvard Business Review Press, Boston, 2008).Google Scholar
Endo, M., Saito, R., Dresselhaus, M.S., Dresselhaus, G., in Carbon Nanotubes: Preparation and Properties, Ebbesen, T.W., Ed. (CRC Press, Boca Raton, FL, 1997), chap. 2, pp. 35110.Google Scholar
Harris, C.E., Shuart, M.J., Gray, H.R., “A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems” (Report NASA/TM-2002-211664, NASA, Hampton, VA, 2002).Google Scholar
Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
Roco, M.C., J. Nanopart. Res. 13, 427 (2011).CrossRefGoogle Scholar
Dresselhaus, M.S., Dresselhaus, G., Saito, R., in Carbon Nanotubes, Endo, M., Iijima, S., Dresselhaus, M.S., Eds. (Elsevier Science, London, 1996), pp. 2735.CrossRefGoogle Scholar
Thostenson, E.T., Ren, Z., Chou, T.-W., Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J., Compos. Sci. Technol. 63, 1671 (2003).CrossRefGoogle Scholar
Park, C., Ounaies, Z., Watson, K.A., Crooks, R.E., Smith, J. Jr., Lowther, S.E., Connell, J.W., Siochi, E.J., Harrison, J.S., St. Clair, T.L., Chem. Phys. Lett. 364, 303 (2002).CrossRefGoogle Scholar
Wise, K.E., Park, C., Siochi, E.J., Harrison, J.S., Chem. Phys. Lett. 391, 207 (2004).CrossRefGoogle Scholar
Qu, L., Lin, Y., Hill, D.E., Zhou, B., Wang, W., Sun, X., Kitaygorodskiy, A., Suarez, M., Connell, J.W., Allard, L.F., Sun, Y.-P., Macromolecules 37, 6055 (2004).CrossRefGoogle Scholar
Delozier, D.M., Watson, K.A., Smith, J.G. Jr., Clancy, T.C., Connell, J.W., Macromolecules 39, 1731 (2006).CrossRefGoogle Scholar
Thostenson, E.T., Chou, T.-W., Carbon 44, 3022 (2006).CrossRefGoogle Scholar
Bai, J.B., Ci, L., Compos. Sci. Technol. 66, 599 (2006).Google Scholar
Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Mathias, C.M., Schulte, K., Compos. Sci. Technol. 66, 3115 (2006).CrossRefGoogle Scholar
Gu, A., Liang, G., Liang, D., Ni, M., Polym. Adv. Technol. 18, 835 (2007).CrossRefGoogle Scholar
Gordon, A., Ruether, M., Blighe, F., Blau, W., Polym. Int. 58, 1002 (2009).Google Scholar
Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Compos. Part A Appl. Sci. Manuf. 41, 1345 (2010).CrossRefGoogle Scholar
Irzhak, V.I., Russ. Chem. Rev. 80, 787 (2011).CrossRefGoogle Scholar
Pillai, S.K., Suprakas, S., in Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications, Reddy, B., Ed. (InTech, Rijeka, Croatia, 2011), chap. 32, pp. 727792.Google Scholar
Guan, J.W., Ashrafi, B., Martinez-Rubi, Y., Zhang, Y., Kingston, C.T., Johnston, A., Simard, B., Polym. Polym. Compos. 19, 99 (2011).CrossRefGoogle Scholar
Jia, X., Zhang, Q., Zhao, M.-Q., Xu, G.-H., Huang, J.-Q., Qian, W., Lu, Y., Wei, F., J. Mater. Chem. 22, 7050 (2012).CrossRefGoogle Scholar
Aldajan, S., Haik, Y., Mater. Des. 34, 379 (2012).CrossRefGoogle Scholar
Tate, J.S., Gaikwad, S., Theodoropoulou, N., Trevino, E., Koo, J.H., J. Compos. 2013, 403656 (2013).CrossRefGoogle Scholar
Jen, Y.-M., Huang, C.-Y., J. Compos. Mater. 48, 3469 (2014).CrossRefGoogle Scholar
Gurau, M., “Part 2: The World’s First Commercial All-CNT Sheets, Tape and Yarns,” Nanocomp Technologies Blog, April 17, 2014, http://www.nanocomptech.com/blog.Google Scholar
Mora, R.J., Vilatela, J.J., Windle, A.H., Compos. Sci. Technol. 69, 1558 (2009).CrossRefGoogle Scholar
General Nano LLC, “Products” (2014); http://www.generalnanolic.com/products (accessed August 25, 2015).Google Scholar
N12 Technologies, “N12 Products” (August 2015); http://www.n12technologies.com/?page_id=5.Google Scholar
Cho, W., Schulz, M., Shanov, V., Carbon 72, 264 (2014).CrossRefGoogle Scholar
Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W.K., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E., Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M.J., Pasquali, M., Science 339, 182 (2013).CrossRefGoogle Scholar
Wang, Z., Liang, Z., Wang, B., Zhang, C., Kramer, L., Compos. Part A Appl. Sci. Manuf. 35, 1225 (2004).CrossRefGoogle Scholar
Jakubinek, M.B., Ashrafi, B., Guan, J., Johnson, M.B., White, M.A., Simard, B., RSC Adv. 4, 75764 (2014).CrossRefGoogle Scholar
De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J., Science 339, 535 (2013).CrossRefGoogle Scholar
Lin, Y., Kim, J.-W., Connell, J.W., Lebrón-Colón, M., Siochi, E.J., Adv. Eng. Mater. 17, 674 (2015).CrossRefGoogle Scholar
Kim, J.-W., Siochi, E.J., Carpena-Núñez, J., Wise, K.E., Connell, J.W., Lin, Y., Wincheski, R.A., ACS Appl. Mater. Interfaces 5, 8597 (2013).CrossRefGoogle Scholar
Kim, J.-W., Sauti, G., Siochi, E.J., Smith, J.G., Wincheski, R.A., Cano, R.J., Connell, J.W., Wise, K.E., ACS Appl. Mater. Interfaces 6, 18832 (2014).CrossRefGoogle Scholar
Cano, R.J., Grimsley, B.W., Czabaj, M.W., Hull, B.T., Siochi, E.J., “Processing and Characterization of Carbon Nanotube Composites,” presented at SAMPE Tech 2014, Seattle, June 2–5, 2014.Google Scholar
Cheng, Q., Bao, J., Park, J.G., Liang, Z., Zhang, C., Wang, B., Adv. Funct. Mater. 19, 3219 (2009).CrossRefGoogle Scholar
Downes, R.S., Wang, S., Haldane, D., Moench, A., Liang, R., Adv. Eng. Mater. 17, 349 (2015).CrossRefGoogle Scholar
Cheng, Q., Wang, B., Zhang, C., Liang, Z., Small 6, 763 (2010).CrossRefGoogle Scholar
“HexPly® 8552 Product Data” (Publication FTA 072e, Hexcel Composites, Stamford, CT, February 2013).Google Scholar
Wardle, B.L., Saito, D.S., Garcia, E.J., Hart, A.J., de Villoria, R.G., Verploegen, E.A., Adv. Mater. 20, 2655 (2008).CrossRefGoogle Scholar
Cebeci, H., de Villoria, R.G., Hart, A.J., Wardle, B.L., Compos. Sci. Technol. 69, 2649 (2009).CrossRefGoogle Scholar
Sahin, K., Fasanella, M.A., Chasiotis, I., Lions, K.M., Newcomb, B.A., Kamath, M.G., Chae, H.G., Kumar, S., Carbon 77, 442 (2014).CrossRefGoogle Scholar
Liu, Y., Kumar, S., ACS Appl. Mater. Interfaces 6, 6069 (2014).CrossRefGoogle Scholar
Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M., Windle, A., Science 318, 1892 (2007).CrossRefGoogle Scholar
Jiang, K., Li, Q., Fan, S., Nature 419, 801 (2002).CrossRefGoogle Scholar
Zhang, M., Atkinson, K.R., Baughman, R.H., Science 306, 1358 (2004).CrossRefGoogle Scholar
Alvarez, N.T., Miller, P., Haase, M., Kienzle, N., Zhang, L., Schulz, M.J., Shanov, V., Carbon 86, 350 (2015).CrossRefGoogle Scholar
Kim, H., Met. Mater. Int. 21, 185 (2015).CrossRefGoogle Scholar
Wicks, S.S., Wang, W., Williams, M.R., Wardle, B.L., Compos. Sci. Technol. 100, 128 (2014).CrossRefGoogle Scholar
Garcia, E.J., Wardle, B.L., Hart, A.J., Yamamoto, M., Compos. Sci. Technol. 68, 2034 (2008).CrossRefGoogle Scholar
Steiner, S.A. III, Li, R., Wardle, B.L., ACS Appl. Mater. Interfaces 5, 4892 (2013).CrossRefGoogle Scholar
Garcia, E.J., Wardle, B.L., Hart, A.J., Compos. Part A Appl. Sci. Manuf. 39, 1065 (2008).CrossRefGoogle Scholar
Kepple, K.L., Sangorn, G.P., Lacasse, P.A., Gruenberg, K.M., Ready, W.J., Carbon 46, 2026 (2008).CrossRefGoogle Scholar
Nguyen, F.N., Tun, S., Haro, A., Yoshioka, K., Hirano, N., Ovalle-Robles, R., “Hybridization of Interlaminar Reinforcements in Carbon Fiber Reinforced Polymer Composite,” presented at SAMPE Tech 2013, Wichita, KS, October 21–24, 2013.Google Scholar
Tun, S.T., Yoshioka, K., Nguyen, F.N., “Out-of-Plane Property Improvements by Hybridization of Interlaminar Reinforcements in CFRP,” presented at SAMPE Tech 2014, Seattle, June 2–5, 2014.Google Scholar
Harris, C.E., Starnes, J.H. Jr., Shuart, M.J., “An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles” (Report, NASA/TM-2001-210844, NASA, Hampton, VA, 2001).Google Scholar
Hinton, M.J., Soden, P.D., Compos. Sci. Technol. 58, 1001 (1998).CrossRefGoogle Scholar
Soden, P.D., Kaddour, A.S., Hinton, M.J., Compos. Sci. Technol. 64, 589 (2004).CrossRefGoogle Scholar
Hinton, M.J., Kaddour, A.S., J. Compos. Mater. 47, 653 (2012).CrossRefGoogle Scholar
Karal, M., “AST Composite Wing Program—Executive Summary” (Report NASA/CR-2001-210650, NASA, Hampton, VA, 2001).Google Scholar
Siochi, E.J., Kim, J.W., Sauti, G., Cano, R.J., Wincheski, R.A., Ragcliffe, J.G., Czabaj, M., Jensen, B.D., Wise, K.E., “High Volume Fraction Carbon Nanotube Composites for Aerospace Applications,” to be presented at CAMX 2015, Dallas, TX, October 27–29, 2015.Google Scholar