Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T11:51:14.577Z Has data issue: false hasContentIssue false

Application of high speed frame camera on the intense electron beam accelerator: An overview

Published online by Cambridge University Press:  04 September 2013

Xin-Bing Cheng
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
Jin-Liang Liu*
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
Bao-Liang Qian
Affiliation:
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
*
Address correspondence and reprint requests to: Jin-Liang Liu, College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China410073. E-mail: ljle333@yahoo.com

Abstract

High speed framing camera (HSFC) could be used to capture the image of the electron beams generated by the intense electron-beam accelerator (IEBA), and it is useful to visualize the evolution of discharging and plasma generation phenomenon. So an overview of the application of HSFC on the IEBA is presented. First, we introduce the synchronization problem of HSFC and IEBA, and a synchronization trigger system which could provide a trigger signal with rise time of 17 ns and amplitude of about 5 V is presented. Second, an imaging system based on IEBA, HSFC, and the synchronization trigger system is developed, and it can be used to image the developmental process of plasma in the output vacuum chamber of IEBA and to measure the electrical parameter of IEBA and electrical trigger signal in real time. Furthermore, the imaging system is used to investigate the developmental process of the electron beam of the A-K gap in vacuum under 180 nanosecond quasi-square pulses. It is obtained that the short A-K gap is closed prematurely under long pulse operation with plasma expansion velocity of about 6.25 cm/µs and the light emission in the A-K gap region has the characteristics of “re-ignition” with light duration time about 3800 ns. At last, the discharging process of surface flashover channel of poly-methyl methacrylate (PMMA) insulator with gap spacing of 170 mm in vacuum under nanosecond quasi-square pulses is studied by the imaging system, and the change of luminosity is analyzed during the surface flashover process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apruzese, J.P., Giuliani, J.L.,Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, J.D., Myers, M.C. & Ponce, D.M. (2006). Experimental evidence for the role of Xe2+ pumping the Ar-Xe infrared laser. Appl. Phys. Lett. 88, 121120.CrossRefGoogle Scholar
Cheng, X.B., Liu, J.L., Qian, B.L., Chen, Z. & Feng, J.H. (2010). Research of a high current repetitive triggered spark gap switch and its application. IEEE Trans. Plasma Sci. 38, 1622.Google Scholar
Cheng, X.B., Liu, J.L., Hong, Z.Q. & Qian, B.L. (2012 a). Synchronization of high speed framing camera and intense electron-beam accelerator. Rev. Sci. Instrum. 83, 065104.CrossRefGoogle ScholarPubMed
Cheng, X.B., Liu, J.L. & Qian, B.L. (2012 b). Characteristics of long gap surface flashover channel in vacuum under nanosecond quasi-square pulses. Appl. Phys. Lett. 101, 08290.CrossRefGoogle Scholar
Frank, H., John, L.G., John, D.S., Matthew, C.M., Patrick, M.B. & Moshe, F. (2008). Forced convective cooling of foils in a repetitively pulsed electron-beam diode. IEEE Trans. Plasma Sci. 36, 778793.Google Scholar
Friedman, S., Limpaecher, R. & Sirchis, M. (1988). Compact energy storage using a modified-spiral PFL. In Power Modulator Symposium. New York: IEEE.Google Scholar
Katsuki, S., Takano, D., Namihira, T. & Akiyama, H. (2001). Repetitive operation of water-filled Blumlein generator. Rev. Sci. Intrum. 72, 27592763.CrossRefGoogle Scholar
Koing, J., Nolte, S. & Tunnermann. (2005). Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express 13, 1059710607.CrossRefGoogle Scholar
Kuai, B., Wu, G., Qiu, A., Wang, L., Cong, P. & Wang, X. (2009). Soft X-ray emissions from neon gas-puff Z-pinch powered by Qiang Guang-I accelerator. Laser Part. Beams 27, 569577.CrossRefGoogle Scholar
Kumar, R., Novac, B.M., Sarkar, P., Simith, I.R. & Greenwood, C. (2008). 300 kV Tesla transformer based pulse forming line generator. Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference. Las Vegas, NE, 246–249.CrossRefGoogle Scholar
Laity, G.R., Fierro, A.S., Hatfield, L.L., Dickens, J.C. & Neuber, A. (2011). Spatially resolved VUV spectral imaging of pulsed atmospheric flashover. IEEE Trans. Plasma Sci. 39, 21222123.CrossRefGoogle Scholar
Li, L.M., Wen, J.C., Men, T. & Liu, Y.G. (2008). An intense-current electron beam source with low-level plasma formation. J. Phys. D: Appl. Phys. 41, 125201.Google Scholar
Liu, J.L., Zhan, T.W., Zhang, J., Liu, Z.X., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.CrossRefGoogle Scholar
Mark, P., Brian, J. & Anthony, W. (2010). Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates. Appl. Opt. 49, 34183427.Google Scholar
Miller, H.C. (1989). Surface flashover of insulators. IEEE Trans. Elect. Insul. 24, 765.CrossRefGoogle Scholar
Miller, R.B. (1998). Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes. J. Appl. Phys. 84, 38803889.CrossRefGoogle Scholar
Neuber, A., Hemmert, D., Dickens, J., Krompholz, H., Hatfield, L. L. & Kristiansen, M. (1999). Imaging of high-power microwave-induced surface flashover. IEEE Trans. Plasma Sci. 27, 138139.CrossRefGoogle Scholar
Pai, S.T. & Zhang, Q. (1995). Introduction to High Power Pulse Technology. Singapore: World Scientific.CrossRefGoogle Scholar
Robert, J.B. & Edl, S. (2001). High Power Microwave Sources and Technologies Beijing: Tsinghua University Press.Google Scholar
Roy, A., Menon, R., Mitra, S., Kumar, S., Sharma, V., Nagesh, K.V., Mittal, K.C. & Chakravarthy, D.P. (2009), Plasma expansion and fast gap closure in a high power electron beam diode. Phys. Plasmas 16, 053103.CrossRefGoogle Scholar
Sampayan, S.E., Gurbaxani, S.H. & Buttram, M.T. (1990). Plasma-cathode-initiated vacuum gap closure. J. Appl. Phys. 68, 2058.CrossRefGoogle Scholar
Sethian, J.D., Myers, M., Smith, I.D., Carboni, V., Kishi, J., Morton, D., Pearce, J., Bowen, B., Schllitt, L., Barr, O. & Webster, W. (2000). Pulsed power for a rep-rate, electron beam pumped KrF laser. IEEE Trans. Plasma Sci. 28 13331337.CrossRefGoogle Scholar
Steven, H.G. & Gregory, S.N. (1997). Review of high-power microwave source research. Rev. Sci. Instrum. 68, 39453974.Google Scholar
Sun, Z.W., Zhu, J.J., Li, Z.S., Alden, M., Feipold, F., Salewski, M. & Kusano, Y. (2013). Optical diagnostics of a gliding arc. Opt. Express 21, 60286044.CrossRefGoogle ScholarPubMed
Tarasenko, V.F., Shunailov, S.A., Shpak, V.G. & Kostyrya, I.D. (2005). Super short electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Tiwari, N., Sahasrabudhe, S.N., Tak, A.K., Barve, D.N. & Das, A.K. (2012). Investigations of some aspects of the spray process in a single wire arc plasma spray system using high speed camera. Rev. Sci. Instrum. 83, 025110.CrossRefGoogle Scholar
Walter, J., Mankowski, J. & Dickens, J. (2008). Imaging of the explosive emission cathode plasma in a vircator high-power microwave source. IEEE Trans. Plasma Sci. 36, 13881389.CrossRefGoogle Scholar
Xun, T., Yang, H.W., Zhang, J.D., Liu, Z.X., Wang, Y. & Zhao, Y.S. (2008). A ceramic radial insulation structure for a relativistic electron beam vacuum diode. Revs. Sci. Instrum. 79, 063303.Google ScholarPubMed
Yang, J., Shu, T. & Fan, Y.W. (2013). Time evolution of the two-dimensional expansion velocity distributions of the cathode plasma in pulsed high-power diodes. Laser Part. Beams 31, 129134.CrossRefGoogle Scholar
Zhang, J., Zhong, H.H. & Luo, L. (2004). A novel overmoded slow-wave high-power microwave (HPM) generator. IEEE Trans. Plasma Sci. 32, 22362242.CrossRefGoogle Scholar