Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:47:36.795Z Has data issue: false hasContentIssue false

Stretchable Silicon Electronics and Their Integration with Rubber, Plastic, Paper, Vinyl, Leather and Fabric Substrates

Published online by Cambridge University Press:  31 January 2011

Dae-Hyeong Kim
Affiliation:
dkim98@uiuc.edu, University of Illinois at Urbana Champaign, Materials Science and Engineering, Urbana, Illinois, United States
Yun-Soung Kim
Affiliation:
ykim60@uiuc.edu, University of Illinois at Urbana Champaign, Materials Science and Engineering, Urbana, Illinois, United States
Zhuangjian Liu
Affiliation:
liuzj@ihpc.a-star.edu.sg, Institute of High Performance Computing, Singapore Science Park, Singapore
Jizhou Song
Affiliation:
jsong8@miami.edu, University of Miami, Coral Gables, Florida, United States
Hoon-Sik Kim
Affiliation:
hkim1@uiuc.edu, University of Illinois at Urbana Champaign, Materials Science and Engineering, Urbana, Illinois, United States
Yonggang Huang
Affiliation:
y-huang@northwestern.edu, Northwestern University, Evanston, United States
John Rogers
Affiliation:
jrogers@uiuc.edu, University of Illinois at Urbana Champaign, Materials Science and Engineering, Urbana, Illinois, United States
Get access

Abstract

Electronic systems that offer elastic mechanical responses to high strain deformations are of growing interest, due to their ability to enable new electrical, optical and biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This talk describes materials and mechanical design strategies for classes of electronic circuits that offer extremely high flexibility and stretchability over large area, enabling them to accommodate even demanding deformation modes, such as twisting and linear stretching to ‘rubber-band’ levels of strain over 100%. The use of printed single crystalline silicon nanomaterials for the semiconductor provides performance in flexible and stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators and differential amplifiers, suggest a valuable route to high performance stretchable electronics that can be integrated with nearly arbitrary substrates. We show examples ranging from plastic and rubber, to vinyl, leather and paper, with capability for large area coverage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Reuss, R. H., Chalamala, B. R., Moussessian, A., Kane, M. G., Kumar, A., Zhang, D. C., Rogers, J. A., Hatalis, M., Temple, D., Moddel, G., Eliasson, B. J., Estes, M. J., Kunze, J., Handy, E. S., Harmon, E. S., Salzman, D. B., Woodall, J. M., Alam, M. A., Murthy, J. Y., Jacobsen, S. C., Olivier, M., Markus, D., Campbell, P. M., Snow, E., Proc. IEEE. 2005, 93, 1239.Google Scholar
[2] Lacour, S. P., Jones, J., Wagner, S., Li, T., Suo, Z., Proc. IEEE. 2005, 93, 1459.Google Scholar
[3] Siegel, A. C., Bruzewicz, D. A., Weibel, D. B., Whitesides, G. M., Adv. Mater. 2007, 19, 727.Google Scholar
[4] Someya, T., Kato, Y., Iba, S., Noguchi, Y., Sekitani, T., Kawaguchi, H., Sakurai, T., IEEE Trans. Electron Devices, 2005, 52, 2502.Google Scholar
[5] Someya, T., Kato, Y., Sekitani, T., Lba, S., Noguchi, Y., Murase, Y., kawaguchi, H., Sakurai, T., Proc. Natl. Acad. Sci. USA 2005, 102, 12321.Google Scholar
[6] Rogers, J. A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V. R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., Proc. Natl. Acad. Sci. USA 2001, 9, 4835.Google Scholar
[7] Forrest, S. R., Nature 2004, 428, 911.Google Scholar
[8] Lee, T.-W., Zaumseil, J., Bao, Z., Hsu, J. W. P., Rogers, J. A., Proc. Natl. Acad. Sci. USA 2004, 101, 429.Google Scholar
[9] Kim, D.-H., Song, J., Choi, W. M., Kim, H.-S., Kim, R.-H., Liu, Z., Huange, Y. Y., Hwang, K.-C., Zhang, Y.-W., Rogers, J. A., Proc. Natl. Acad. Sci. USA 2008, 105, 18675.Google Scholar
[12] Service, R. F., Science 2003, 301, 909.Google Scholar
[13] Ouyang, Y., Chappell, W. J., IEEE Trans. Antennas Propag. 2008, 56, 381.Google Scholar
[14] Lee, J. B., Subramanian, V., IEEE Trans. Electron Devices 2005, 52, 269.Google Scholar
[15] Hamedi, M., Forchheimer, R., Inganas, O., Nat. Mater. 2007, 6, 357.Google Scholar
[16] Andersson, P., Nilsson, D., Svensson, P.-O., Chen, M., Malmstrom, A., Remonen, T., Kugler, T., Berggren, M., Adv. Mater. 2002, 14, 1460.Google Scholar
[17] Eder, F., Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Dehm, C., Appl. Phys. Lett. 2004, 84, 2673.Google Scholar
[18] Kim, Y.-H., Moon, D.-G., Han, J.-I., IEEE Electron Device Lett., 2004, 25, 702.Google Scholar
[19] Yang, L., Rida, A., Vyas, R., Tentzeris, M. M., IEEE Trans. Microw. Theory Tech. 2007, 55, 2894.Google Scholar
[20] Kim, D.-H., Kim, Y.-S., Wu, J., Liu, Z., Song, J., Kim, H.-S., Huang, Y. Y., Hwang, K.-C., Rogers, J. A., Adv. Mater. 2009, 21, 3703.Google Scholar