Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T05:29:41.425Z Has data issue: false hasContentIssue false

Deep Levels in Multilayer Structures of Si/Si0.8Ge0.2 Grown by Low-Pressure Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Yutaka Tokuda
Affiliation:
Department of Electronics, Aichi Institute of Technology, Toyota 470–0392, Japan
Kenichi Shirai
Affiliation:
Department of Electronics, Aichi Institute of Technology, Toyota 470–0392, Japan
Get access

Abstract

Deep levels in multilayer structures of ten periods Si/Si0.8Ge0.2 (16/5 nm) grown by low-pressure chemical vapor deposition have been characterized by deep level transient spectroscopy (DLTS). DLTS measurements reveal one dominant peak (E1) at around 130 K with a minor peak (E2) at around 240 K. The dominant trap E1 (Ec – 0.19 eV) is ascribed to the dislocation-related defect. The increase of the E1 concentration by a factor of 2 to 3 and the change of its energy level to Ec – 0.22 eV are observed with annealing up to 120°C. It is speculated that hydrogen incorporated during growth associates with E1 and the behavior of E1 upon annealing is caused by the release of hydrogen from E1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruhle, A., Kibbel, H., König, U., Erben, U., Kasper, E., IEEE Trans. Electron Device Lett. 13, 206 (1992).Google Scholar
2. Schäffler, F., Semicond. Sci. Technol. 12, 1515 (1997).Google Scholar
3. Lin, T-L., Ksendzov, A., Dejewski, S. M., Jones, E. W., Fathauer, R. W., Krabach, T. N. and Maserjian, J., IEEE Trans. Electron Devices 38, 1141 (1991)Google Scholar
4. Temkin, H., Pearsall, T. P., Bean, J. C., Logan, R. A. and Luryi, S., Appl. Phys. Lett. 48, 963 (1986).Google Scholar
5. Daami, A., Bremond, G., Caymax, M. and Poortmans, J., J. Vac. Sci. Technol. B 16, 1737 (1998).Google Scholar
6. Thor, E., Mühlberger, M., Palmetshofer, L. and Schäffler, F., J. Appl. Phys. 90, 2252 (2001).Google Scholar
7. Lang, D. V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
8. Tokuda, Y., Shimizu, H. and Usami, A., Jpn. J. Appl. Phys. 18, 309 (1979).Google Scholar
9. Omling, P., Weber, E. R., Montelius, L., Alexander, H. and Michel, J., Phys. Rev. B 32, 6571 (1985).Google Scholar
10. Wosinski, T., J. Appl. Phys. 65, 1566 (1989).Google Scholar
11. Kveder, V. V., Osipyan, Y. A., Schröter, W. and Zoth, G., Phys. Status Solidi A 72, 701 (1982).Google Scholar
12. Cavalcoli, , Cavallini, A. and Gombia, E., Phys. Rev. B 56, 10208 (1997).Google Scholar
13. Chen, W. M., Buyanova, I. A., Ni, W.-X., Hansson, G. V. and Monemar, , Appl. Phys. Lett. 70, 369 (1997).Google Scholar
14. Sekiguchi, T., Kveder, V. V. and Sumino, K., J. Appl. Phys. 76, 7882 (1994).Google Scholar
15. Tokuda, Y. and Seki, T., Semicond. Sci. Technol. 15, 126 (2000).Google Scholar
16. Weber, J. in Hydrogen in Semiconductors and Metals, edited by Nickel, N. H., Jackson, W. B., Bowman, R. C. and Leisure, R. G., (Mater. Res. Soc. Proc. 513, Warrendale, PA, 1998) pp. 345356.Google Scholar