Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T18:46:16.526Z Has data issue: false hasContentIssue false

Graphene/Ni Wire Foam with Multivalent Manganese Oxide Catalysts for Li-O2 Battery Cathode

Published online by Cambridge University Press:  23 June 2017

Chueh Liu*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, USA.
Changling Li
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, USA.
Zafer Mutlu
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, USA.
Cengiz S. Ozkan
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, USA. Department of Mechanical Engineering, University of California, Riverside, CA, USA.
Mihrimah Ozkan
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA, USA. Department of Electrical Engineering, University of California, Riverside, CA, USA.
*
*(Email: cliu048@ucr.edu)
Get access

Abstract

Herein, commercial Ni foam coated with self-assembled and linearly-aligned Ni wires is utilized as a cost-effective current collector for application in Li-O2 battery. The Ni wires are furthered deposited with graphene layers (g-Ni wire) to improve electrical conductivity. Multivalent Mn oxides consisting of Mn3O4, Mn2O3 and MnCO3 are used as effective oxygen reduction (ORR) and evolution reaction (OER) catalysts deposited on g-Ni wire current collectors. Specific capacities are respective ∼100 and ∼170 mAh g-1 without or with O2 introduction into the cell. The relative facile synthesis process requiring merely solution-based synthesis at ambient pressure, low temperature and short process time renders the Mn oxides/g-Ni wire electrode promising for Li-O2 battery application.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, C., Wang, C. C., Kei, C. C., Hsueh, Y. C., Perng, T. P., Small 5, 1535 (2009)Google Scholar
Hsueh, Y. C., Wang, C. C., Kei, C. C., Lin, Y. H., Liu, C., Perng, T. P., J. Catal. 294, 63 (2012)Google Scholar
Liu, C., Li, C., Ahmed, K., Wang, W., Lee, I., Zaera, F., Ozkan, C. S., Ozkan, M., Adv. Mater. Interfaces 3, 1500503 (2016)Google Scholar
Bell, J., Ye, R., Ahmed, K., Liu, C., Ozkan, M., Ozkan, C. S., Nano Energy 18, 47 (2015)Google Scholar
Li, C. L., Liu, C., Wang, W., Bell, J., Mutlu, Z., Ahmed, K., Ye, R., Ozkan, M., Ozkan, C. S., Chem. Commun. 52, 11398 (2016)Google Scholar
Liu, C., Li, C. L., Ahmed, K., Mutlu, Z., Ozkan, C. S., Ozkan, M., Sci. Rep. 6, 29183 (2016)Google Scholar
Liu, C., Li, C., Wang, W., Ozkan, M., Ozkan, C. S., Energy Technol. 5, 422 (2017)Google Scholar
Wang, W., Favors, Z., Li, C., Liu, C., Ye, R., Fu, C., Bozhilov, K., Guo, J., Ozkan, M., Ozkan, C. S., Sci. Rep. 7, 44838 (2017)Google Scholar
Favors, Z., Wang, W., Bay, H. H., Mutlu, Z., Ahmed, K., Liu, C., Ozkan, M., Ozkan, C. S., Sci. Rep. 4, 5623 (2014)Google Scholar
Li, C. L., Liu, C., Wang, W., Mutlu, Z., Bell, J., Ahmed, K., Ye, R., Ozkan, M., Ozkan, C. S., Sci. Rep. 7, 917 (2017)Google Scholar
Liu, C., Li, C. L., Ahmed, K., Wang, W., Lee, I., Zaera, F., Ozkan, C. S., Ozkan, M., RSC Adv. 6, 81712 (2016)Google Scholar
De, S., Zhang, J. G., Luque, R., Yan, N., Energy Environ. Sci. 9, 3314 (2016)Google Scholar
Li, C. L., Chartuprayoon, N., Bosze, W., Low, K., Lee, K. H., Nam, J., Myung, N. V., Electroanal 26, 711 (2014)Google Scholar
Low, K., Chartuprayoon, N., Echeverria, C., Li, C. L., Bosze, W., Myung, N. V., Nam, J., Nanotechnology 25, 115501 (2014)Google Scholar
Low, K., Horner, C. B., Li, C. L., Ico, G., Bosze, W., Myung, N. V., Nam, J., Sens. Actuators, B 207, 235 (2015)Google Scholar
Hsueh, Y. C., Wang, C. C., Liu, C., Kei, C. C., Perng, T. P., Nanotechnology 23, 405603 (2012)Google Scholar
Hsueh, Y. C., Hu, C. T., Wang, C. C., Liu, C., Perng, T. P., ECS Trans. 16, 855 (2008)Google Scholar
Ionescu, R., George, A., Ruiz, I., Favors, Z., Mutlu, Z., Liu, C., Ahmed, K., Wu, R., Jeong, J. S., Zavala, L., Mkhoyan, K. A., Ozkan, M., Ozkan, C. S., Chem. Commun. 50, 11226 (2014)Google Scholar
Ionescu, R., Ruiz, I., Favors, Z., Campbell, B., Neupane, M. R., Wickramaratne, D., Ahmed, K., Liu, C., Abrahamian, N., Lake, R. K., Ozkan, M., Ozkan, C. S., Chem. Commun. 51, 11213 (2015)Google Scholar
Mutlu, Z., Wu, R. J., Wickramaratne, D., Shahrezaei, S., Liu, C., Temiz, S., Patalano, A., Ozkan, M., Lake, R. K., Mkhoyan, K. A., Ozkan, C. S., Small 12, 2998 (2016)Google Scholar
Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., Kong, J., Nano Lett. 9, 30 (2009)Google Scholar
Lu, Y. C., Gallant, B. M., Kwabi, D. G., Harding, J. R., Mitchell, R. R., Whittingham, M. S., Shao-Horn, Y., Energy Environ. Sci. 6, 750 (2013)Google Scholar
Harding, J. R., Lu, Y. C., Tsukada, Y., Shao-Horn, Y., Phys. Chem. Chem. Phys. 14, 10540 (2012)Google Scholar
Zhang, T., Zhou, H. S., Nat. Commun. 4, 1817 (2013)Google Scholar
Ni, W., Wu, H. B., Wang, B., Xu, R., Lou, X. W., Small 8, 3432 (2012)Google Scholar