Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T19:43:56.732Z Has data issue: false hasContentIssue false

Grain Boundaries in YBa2Cu3O7−x

Published online by Cambridge University Press:  28 February 2011

L. A. Tietz
Affiliation:
Department of Materials Science and Engineering, Bard Hall
C. B. Carter
Affiliation:
Department of Materials Science and Engineering, Bard Hall
D. K. Lathrop
Affiliation:
School of Applied and Engineering Physics, Clark Hall Cornell University, Ithaca, NY 14853
S. E. Russek
Affiliation:
School of Applied and Engineering Physics, Clark Hall Cornell University, Ithaca, NY 14853
R. A. Buhrman
Affiliation:
School of Applied and Engineering Physics, Clark Hall Cornell University, Ithaca, NY 14853
Get access

Abstract

Grain boundaries in YBa2Cu3O7−x. thin films deposited on yttria-stabilized cubic zirconia have been characterized using selected-area diffraction. In addition to twin boundaries, several types of low-angle and high-angle grain boundaries are frequently found in these films. The high-angle boundaries include 23.5°, 29°, and 45° rotations about [001] and 90° rotations about [100] or [010]. These boundaries are compared to special high-angle grain boundaries in cubic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chu, C.W., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Wu, M.K., Ashburn, J.R. and Huang, C.Y., Phys. Rev. Lett 58 911 (1987).Google Scholar
2. Dinger, T.R., Worthington, T. K., Gallagher, W.J. and Sandstrom, R.L., Phys. Rev. Lett. 58, 2687 (1987).Google Scholar
3. Hervieu, M., Domenges, B., Michel, C., Heger, G., Provost, J. and Raveau, B., Phys. Rev. B 36, (4) 3920 (1987).Google Scholar
4. Viegers, M.P.A., de Leeuw, D.M., Mutsaers, C.A.H.A., Van Hal, H.A.M., Smoorenburg, H.C.A., Hängst, J.H.T., de Vries, J.W.C. and Zalm, P.C., J. Mater. Res. 2 (6), 743 (1987).Google Scholar
5. Camps, R.A., Evetts, J.E., Glowacki, B.A., Newcomb, S.B. and Stobbs, W.M., J. Mater. Res. 2(6), 750 (1987).Google Scholar
6. Sueno, S., Nakai, I., Okamura, F.P. and Ono, A., Jpn. J. Appl. Phys. 26 (5), L842 (1987).Google Scholar
7. Pande, C.S., Singh, A.K., Toth, L., Gubser, D.U. and Wolf, S., Phys. Rev. B 36 (10), 5669 (1987).Google Scholar
8. Tietz, L.A., De Cooman, B.C., Carter, C.B., Lathrop, D.K., Russek, S.E. and Buhrman, R.A., J. Electron Microsc. Tech. (in press).Google Scholar
9. Lathrop, D.K., Russek, S.E. and Buhrman, R.A., Appl. Phys. Lett. 51. (19), 1554 (1987).Google Scholar
10. Tietz, L.A., De Cooman, B.C., Carter, C.B., Lathrop, D.K., Russek, S.E. and Buhrman, R.A., Mater. Res. Soc. Proc., Boston, MA Nov. 30-Dec. 5, 1987 (in press).Google Scholar
11. Simpson, Y.K. and Carter, C.B., Ber. Bunsenges. Phys. Chem. 90, 676 (1986).Google Scholar