Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T10:47:36.002Z Has data issue: false hasContentIssue false

A New Mechanism for Lubrication in Liquid Crystals

Published online by Cambridge University Press:  15 February 2011

Robijn F. Bruinsma
Affiliation:
Materials and Physics Departments, and the Materials Research laboratory, University of California, Santa Barbara, CA 93106.
Cyrus R. Safinya
Affiliation:
Materials and Physics Departments, and the Materials Research laboratory, University of California, Santa Barbara, CA 93106.
Get access

Abstract

Recent synchrotron X-ray scattering studies on the thermotropic liquid crystal lubricant 8CB under shear flow have shown that for high shear rates the smectic layers are oriented perpendicular to the orientation assumed by conventional solid layered lubricants. This result invalidates existing theories of the lubrication mechanism of these materials. We show that the new orientation is the result of flow deformation of thermal fluctuations. This same mechanism is found to create a “normal stress” lift-force which we propose as the new lubrication mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cameron, A., Basic Lubrication Theory (Ellis Horwood Ltd, and J.Wiley (1976))Google Scholar
2 Batchelor, G.K., An Introduction to Fluid Dynamics (Cambridge University Press, 1970)Google Scholar
3 de Gennes, P.G., The Physics of Liquid Crystals (Oxford University Press, London, 1974).Google Scholar
4 Fischer, T. E., Bhattacharya, S., Salher, R., Lauer, J. L., and Ahn, Y-J., STLE TRIBOLOGY TRANSACTIONS, 31,442 (1988); J. L. Lauer, Y. J. Ahn, and T. E. Fischer, in “Tribology and the Liquid-Crystalline State”, ACS symposium series 441, (Washington, DC 1990).Google Scholar
5 Oswald, P. and Kleman, M., J.Phys.Lett. (Paris), 43, L411 (1982)Google Scholar
6 Safinya, C.R., Sirota, E.B., Bruinsma, R.F., Jeppesen, C., Plano, R.J., and Wenzel, L.J., Science (submitted).Google Scholar
7 Horn, R. G. and Kleman, M., Ann. Phys., 3, 229 (1978).Google Scholar
8 Ribotta, R. and Durand, G., J. Physique 38, 179 (1977).Google Scholar
9 Safinya, C.R., Sirota, E.B., Plano, R., and Bruinsma, R., J.Phys.C 2, SA365 (1990); C.R. Safinya, E.B. Sirota, and R. Plano, Phys.Rev.Lett. 66, 1986 (1991).Google Scholar
10 Bruinsma, R. F. and Safinya, C. R., Phys. Rev. A, 43, 5377 (1991).Google Scholar
11 Ericksen, J. L., Arch. Ration. Mech. Anal. 4,231 (1960); F. M. Leslie, Quart. J. Mech. Appl. Math. 19, 357 (1966); O. Parodi, J. Phys. (Paris) 31, 581 (1970).Google Scholar
12 McMillan, W. L., Phys. Rev. A 9, 1720 (1974); F. Janig and F. Brochard, J. Phys. (Paris) 35, 301 (1974).Google Scholar
13 Pieranski, P and Guyon, E., Phys. Rev. Lett. 32, 924 (1974); K. Skarp et. al. Mol. Cryst. Liq. Cryst. 66,199 (1981)Google Scholar
14 See for instance: Evans, D.J., Hanley, H.J.M., and Hess, S., Physics Today 37 (1), 26 (1984).Google Scholar