Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T04:11:20.318Z Has data issue: false hasContentIssue false

Nanostructural tuning of the texture of PZT pervoskite thin films grown by RF sputtering for piezoelectric MEMS

Published online by Cambridge University Press:  09 June 2014

Andrea Mazzalai
Affiliation:
Ceramics Laboratory, École Polytechnique Fédérale de Lasuanne – EPFL Lausanne, CH-1015, Switzerland.
Martin Kratzer
Affiliation:
Oerlikon Systems R&D, Oerlikon Advanced Technologies AG Balzers, LI-9496, Liechtenstein.
Ramin Matloub
Affiliation:
Ceramics Laboratory, École Polytechnique Fédérale de Lasuanne – EPFL Lausanne, CH-1015, Switzerland.
Cosmin Sandu
Affiliation:
Ceramics Laboratory, École Polytechnique Fédérale de Lasuanne – EPFL Lausanne, CH-1015, Switzerland.
Paul Muralt
Affiliation:
Ceramics Laboratory, École Polytechnique Fédérale de Lasuanne – EPFL Lausanne, CH-1015, Switzerland.
Get access

Abstract

Currently, large efforts are going on to scale up PZT thin film processes for large volume MEMS fabrication. It is critical to complete the scaling up with optimized film properties. In this work we report about microstructural control and piezoelectric properties of RF magnetron sputtered PZT (Pb(Zrx,Ti1−x)O3) thin films. The former is a prerequisite to achieve good properties homogeneously on the entire wafer, and with a good repeatability. We focus on the use of a commercial tool capable to reach a deposition rate of 1nm/sec with a thickness uniformity better than +/-3%. We show particularly how the texture can be chosen between (100) and (111) orientation upon tuning the thickness of a very thin TiO2 seed layer on fully passivated Pt electrodes. The surface morphology as resulting from the various grain shapes is strongly influenced by the self-bias established on the substrate, and by the growth temperature. PZT films with compact grain structure and flat surface reached a transverse piezoelectric coefficient e31,f of -23±1 C/m2 in the actuator mode (converse piezoelectric effect) and a dielectric strength of 0.5MV/cm. Both are remarkable values for un-doped, pure PZT thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jaffe, B., Cook, W., and Jaffe, H., Piezoelectric Ceramics. Academic Press, 1971.Google Scholar
Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., Mukati, K., Cantoni, M., Seifert, A., and Setter, N., Sens. and Actuat. A – Phys., vol. 105, p. 162, 2003.CrossRefGoogle Scholar
Brunahl, J. and Grishin, A., Sens. and Actuat. A – Phys., vol. 101, p.371, 2002.10.1016/S0924-4247(02)00212-1CrossRefGoogle Scholar
Polla, D. and Francis, L., Ann. Rev. of Mat. Sci., vol. 28, p. 563, 1998.CrossRefGoogle Scholar
Muralt, P., Kohli, M., Maeder, T., Kholkin, A., Brooks, K., Setter, N., and Luthier, R., Sens. and Actuat. A – Phys., vol. 48, p. 157, 1995.CrossRefGoogle Scholar
Ried, R., Kim, E., Hong, D., and Mueller, R., J. of MEMS, vol. 2, p. 111, 1993.CrossRefGoogle Scholar
Bernstein, J., Finberg, S., Houston, K., Niles, L., Chen, H., Cross, L., Li, K., and Udayakumar, K., IEEE T.U.F.F.C., vol. 44, p. 960, 1997.Google Scholar
Guerre, R., Drechsler, U., Bhattacharyya, D., Rantakari, P., Stutz, R., Wright, R., Milosavljevic, Z., Vaha-Heikkila, T., Kirby, P., and Despont, M., J. of MEMS, vol. 19, p. 548, 2010.CrossRefGoogle Scholar
Rhee, C.-H., Pulskamp, J. S., Polcawich, R. G., and Oldham, K. R., J. of MEMS, vol. 21, p. 1492, 2012.CrossRefGoogle Scholar
Baran, U., Brown, D., Holmstrom, S., Balma, D., Davis, W., Muralt, P., and Urey, H., J. of Microelectromechanical Systems,, vol. 21, p. 1303, Dec 2012.CrossRefGoogle Scholar
Kwok, C. and Desu, S., J. of Mat. Res., vol. 9, p. 1728, 1994.10.1557/JMR.1994.1728CrossRefGoogle Scholar
Muralt, P., IEEE T.U.F.F.C., vol. 47, p. 903, 2000.Google Scholar
Härdtl, K. and Rau, H., Solid State Comm., vol. 7, p. 41, 1969.CrossRefGoogle Scholar
Klissurska, R., Brooks, K. G., Reaney, I., Pawlaczyk, C., Kosec, M., and Setter, N., J. of the Amer. Cer. Soc., vol. 78, p. 1513, 1995.CrossRefGoogle Scholar
Maeder, T., Sagalowicz, L., and Muralt, P., Jap. J. of Appl. Phys., vol. 37, p. 2007, 1998.CrossRefGoogle Scholar
Mazzalai, A., Balma, D., Chidambaram, N., Jin, Li, and Muralt, P., Proc. of the 2013 IEEE International Symp. on the Appl. of Ferroel., p. 363, 2013.Google Scholar
Maeder, T. and Muralt, P., Epitaxial Oxide Thin Films and Heterostructures, ser. MRS Symp. Proc., vol. 341, p. 361, 1994.Google Scholar
Krupanidhi, S., Maffei, N., Sayer, M., and El-Assal, K., J. of Appl. Phys., vol. 54, p. 6601, 1983.10.1063/1.331895CrossRefGoogle Scholar
Muralt, P., Hiboux, S., Mueller, C., Maeder, T., Sagalowicz, L., Egami, T., and Setter, N., Integr. Ferroel., vol. 36, p. 53, 2001.CrossRefGoogle Scholar
Roy, R., Etzold, K., and Cuomo, J., Ferroel. Thin Films, ser. MRS Symp. Proc., vol. 200, p. 77, 1990.CrossRefGoogle Scholar
Kokaze, Y., Kimura, I., Jimbo, T., Endo, M., Ueda, M., and Suu, K., ULVAC Technical J., vol. E, p. 13, 2007.Google Scholar
Buhlmann, S., Muralt, P., and Von Allmen, S., Appl. Phys. Lett., vol. 84, p. 2614, 2004.CrossRefGoogle Scholar
Muralt, P., J. of Appl. Phys., vol. 100, p. 051605, 2006.CrossRefGoogle Scholar
Conde, J. and Muralt, P., IEEE T.U.F.F.C., vol. 55, p. 1373, 2008.Google Scholar
Hiboux, S. and Muralt, P., J. of the European Cer. Soc., vol. 24, no. 6, pp. 15931596, 2004.CrossRefGoogle Scholar
Bouregba, R., Poullain, G., Vilquin, B., and Murray, H., Mater. Res. Bull., vol. 35, p. 1381, 2000.CrossRefGoogle Scholar