Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T16:32:13.798Z Has data issue: false hasContentIssue false

Reactive Phase Formation in Thin Films: Evolution of Grain Structure

Published online by Cambridge University Press:  15 February 2011

K. Barmak
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
C. Michaelsent
Affiliation:
Institute of Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
J. Rickman
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
M. Dahmstt
Affiliation:
Flensburg Polytechnical Institute, 29943 Flensburg, Germany
Get access

Abstract

It is a well known fact that the properties and performance of polycrystalline materials, including polycrystalline thin films, are strongly affected by the grain structure. Therefore, in treating reactive phase formation in these films, it is (or it will inevitably be) necessary to quantify the grain structure of reactant and product phases and its evolution during the course of the reaction. Theoretical models and the conventional view of thin film reactions, however, have been largely extensions, to small and finite dimensions, of theories and descriptions developed for bulk diffusion couples. These models and descriptions primarily focus on the growth stage and to a much lesser extent on the nucleation stage. Consequently, these models and descriptions are not able to treat the development of product phase grain structure. Recent calorimetric investigations of several thin film systems demonstrate the importance of nucleation kinetics (and hence nucleation barriers) in product phase formation and provide quantitative measures of the thermodynamics and kinetics of formation of the product phases, thereby allowing some degree of comparison with reaction models. Furthermore, microstructural investigations of thin-film reactions demonstrate the non-planarity of the growth front and highlight the role of reactant-phase grain boundaries. In this paper, a summary of these experimental studies and recent theoretical treatments, which combine nucleation and growth in an integrated manner, is presented, with particular emphasis on the Nb/Al system. These experiments and models lead to a new view of reactive phase formation and grain structure evolution as one in which the latter is an integral part of the former. Based on this view, directions for future research are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mayer, J.W., Lau, S.S., Electronic Materials Science, McMillan, New York, (1990) pp.307308.Google Scholar
2. Johnson, W.L., Progress Mater. Sci. 30 (1986) pp. 81134.Google Scholar
3. Coffey, K., Clevenger, L., Barmak, K., Rudman, D., Thompson, C., Appl. Phys. Lett. 55, 852 (1989).Google Scholar
4. Coffey, K. R., Barmak, K., Rudman, D. A., Foner, S., J. Appl. Phys. 72, 1341 (1992).Google Scholar
5. Barmak, K., Vivekanand, S., Ma, F., Michaelsen, C., Mater. Res. Soc. Symp. Proc., in press.Google Scholar
6. Lucadamo, G., Barmak, K., Michaelsen, C., Mater. Res. Soc. Symp. Proc., in press.Google Scholar
7. Ma, E., Thompson, C. V., Clevenger, L. A., J. Appl. Phys. 69, 2211 (1991).Google Scholar
8. Michaelsen, C., Wöhiert, S., Bormann, R., Mat. Res. Soc. Symp. Proc. 343, 205 (1994), and C. Michaelsen, S. Wohlert, R. Bormann, K. Barmak, Mater. Res. Soc. Symp. Proc., in press.Google Scholar
9. Clevenger, L.A., Thompson, C.V., J. Appl. Phys. 67, 1325 (1990).Google Scholar
10. Clevenger, L.A., Thompson, C.V., de Avillez, R. R., Ma, E., J. Vac. Sci. Technol. A8, 1566 (1990) and E. Ma, L.A. Clevenger, C.V. Thompson, J. Mater. Res. 7, 1350 (1992).Google Scholar
11. Coffey, K.R., Barmak, K., Acta Metall. Mater. 42, 2905 (1994) and references therein.Google Scholar
12. Barmak, K., Coffey, K.R., Mater. Res. Soc. Symp. Proc. 311, 51 (1993).Google Scholar
13. Newcomb, S. B., Tu, K.N., Appl. Phys. Lett. 48, 1436 (1986).Google Scholar
14. Barmak, K., Michaelsen, C., J. Mater. Res., submitted for publication.Google Scholar
15. Kidson, G.V., J. Nucl. Mater. 3, 21 (1961).Google Scholar
16. Wagner, C., Acta. Metall. 17, 99 (1969).Google Scholar
17. Evans, C.J., The Corrosion and Oxidation of Metals, Edward Arnold, London, (1960) p. 926.Google Scholar
18. van Loo, F.J.J., Prog. Solid State Chem 20, 47 (1990).Google Scholar
19. Shmalzried, H., Solid State Reactions, Verlag Chemie, Weinheim, (1981).Google Scholar
20. Kirkaldy, J.S., Young, J.D., Diffusion in the Condensed State, Inst. Metals, London, (1987).Google Scholar
21. Philibert, J., Atom Movements, Les Editions de Physique, Les Ulis, France (1991).Google Scholar
22. Philibert, J., Materials Science Forum, Y. Limoge, J.L. Bocquet eds., 155–156, 15 (1994).Google Scholar
23. d'Heurle, F.M., J. Mater. Res. 3, 167 (1988).Google Scholar
24. Coffey, K.R., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1989).Google Scholar
25. Barmak, K., Coffey, K.R., Rudman, D.A., Foner, S., J. Appl. Phys. 67, 7313 (1990).Google Scholar
26. Meschel, S.V., Kleppa, O.J., J. Alloys and Compounds 191, 111 (1993).Google Scholar
27. Thompson, C.V., Mater. Res. Soc. Symp. Proc. 343, 3 (1994).Google Scholar
28. Christian, J.W., The Theory of Phase Transformations in Metals and Alloys, Vol. I, Pergamon Press, New York, (1981) p. 452.Google Scholar
29. Mingard, K.P., Cantor, B., J. Mater. Res. 8, 274 (1993).Google Scholar
30. Pretorious, R., Marais, T.K., Theron, C.C., Mater. Sci. Eng. 10, 1 (1993)Google Scholar
31. Gusak, A.M., Nazarov, A.V., Phys. Condens. Matter 4, 4753 (1992) and references therein.Google Scholar
32. Desré, P.J., Acta Metall. mater. 39, 2309 (1991).Google Scholar
33. Thompson, C.V., J. Mater. Res. 7, 367 (1992).Google Scholar
34. Hoyt, J.J., Brush, L.N., J. Appl. Phys. 78, 1589 (1995).Google Scholar
35. Balluffi, R.W., Blakeley, J. M., Thin Solid Films 25, 363 (1975).Google Scholar
36. Harrison, L. G., Trans. Faraday Soc. 57, 1191 (1961).Google Scholar
37. Hylton, T.L., Coffey, K.R., Parker, M.A., Howard, J.K., Science 261, 1021 (1993).Google Scholar