Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T06:36:56.311Z Has data issue: false hasContentIssue false

Impact of technological synchronicity on prospects for CETI

Published online by Cambridge University Press:  29 November 2011

Marko Horvat
Affiliation:
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia e-mail: Marko.Horvat2@fer.hr, Anamari.Nakic@fer.hr
Anamari Nakić
Affiliation:
Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia e-mail: Marko.Horvat2@fer.hr, Anamari.Nakic@fer.hr
Ivana Otočan
Affiliation:
Faculty of Natural Sciences and Mathematics, University of Zagreb, Bijenička cesta 30, HR-10000 Zagreb, Croatia e-mail: Ivana.Otocan@gmail.com

Abstract

For over 50 years, astronomers have searched the skies for evidence of electromagnetic signals from extraterrestrial (ET) civilizations that have reached or surpassed our level of technological development. Although often overlooked or given as granted, the parallel use of an equivalent communication technology is a necessary prerequisite for establishing contact in both leakage and deliberate messaging strategies. Civilization advancements, especially accelerating change and exponential growth, lessen the perspective for a simultaneous technological status of civilizations thus putting hard constraints on the likelihood of a dialogue. In this paper, we consider the mathematical probability of technological synchronicity of our own and a number of other hypothetical ET civilizations and explore the most likely scenarios for their concurrency. If Search for Extraterrestrial Intelligence (SETI) projects rely on a fortuitous detection of leaked interstellar signals (so-called ‘eavesdropping’) then with minimum prior assumptions N⩾138–4991 Earth-like civilizations have to exist at this moment in the Galaxy for the technological usage synchronicity probability p⩾0.95 in the next 20 years. We also show that since the emergence of complex life, coherent with the hypothesis of the Galactic habitable zone (GHZ), N⩾1497 ET civilizations had to be created in the Galaxy in order to achieve the same estimated probability in the technological possession synchronicity that corresponds to the deliberate signalling scenario.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benford, J., Benford, G. & Benford, D. (2010). Astrobiology 10(5), 475490.CrossRefGoogle Scholar
Bowman, J.D. et al. (2007). Astron. J. 133, 15051518.CrossRefGoogle Scholar
Cohen, J.E. (1995). Science 269(5222), 341346.CrossRefGoogle Scholar
Dewdney, P.E. et al. (2009). Proc. IEEE 97(8), 14821496.CrossRefGoogle Scholar
Drake, F. (1961). Phys. Today 14, 44, 46, 4042.CrossRefGoogle Scholar
Forgan, D.H. (2011). Int. J. Astrobiol. 10(4), 341347.CrossRefGoogle Scholar
Forgan, D.H. & Nichol, R.C. (2011). Int. J. Astrobiol. 10, 7781.CrossRefGoogle Scholar
Gott, R.J. III (1993). Nature 363, 315319.CrossRefGoogle Scholar
Harding, A.F. (2000). European Societies in the Bronze Age. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Harkins, C.A. (2008). 73 MO Law Rev. 747813.Google Scholar
Horvat, M. (2006). Int. J. Astrobiol. 5(2), 143149.CrossRefGoogle Scholar
Kassim, N.E. (2004). Planet. Space Sci. 52(15) 13431349.CrossRefGoogle Scholar
Klain, D.A. & Rota, G. (1997). Introduction to Geometric Probability, Cambridge University Press, Cambridge.Google Scholar
Korotayev, A. (2005). J. World-Syst. Res. 11(1), 7993.CrossRefGoogle Scholar
Kurzweil, R. (2001). The Law of Accelerating Returns. Retrieved from: http://www.kurzweilai.net/articles/art0134.htmlGoogle Scholar
Landsberg, P.T. & Dewynne, J.N. (1997). Nature 389, 779.CrossRefGoogle Scholar
Lesliea, J. (2008). Philosophy 83, 519524.CrossRefGoogle Scholar
Lineweaver, C.H., Fenner, Y. & Gibson, B.K. (2004). Science 303(5654), 5962.CrossRefGoogle Scholar
Loeb, A. & Zaldarriaga, M. (2007). J. Cosmol. Astropart. Phys. 01, 020.CrossRefGoogle Scholar
MAPM, A Portable Arbitrary Precision Math Library in C. (2012). Retrieved from: http://www.tc.umn.edu/~ringx004/mapm-main.htmlGoogle Scholar
Shostak, S. (2003). Int. J. Astrobiol. 2(2), 111114.CrossRefGoogle Scholar
Shostak, S. (2011a). Acta Astron. 68(3–4), 347350.CrossRefGoogle Scholar
Shostak, S. (2011b). Acta Astron. 68(3–4), 366371.CrossRefGoogle Scholar
Sober, E. (2003). Synthese 135(3), 415430.CrossRefGoogle Scholar
Tarter, J. (2001). Annu. Rev. Astron. Astrophys. 39, 511548.CrossRefGoogle Scholar
Vujic, J., Marincic, A., Ercegovac, M. & Milovanovic, B. (2001). 5th Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Service, vol. 1, pp. 323326.Google Scholar
Wilson, T.L. (2001). Nature 409, 11101114.CrossRefGoogle Scholar
Zaitsev, A.L. (2011). Front. Collect. 3, 399428.CrossRefGoogle Scholar