Hostname: page-component-6b989bf9dc-vmcqm Total loading time: 0 Render date: 2024-04-14T21:26:10.252Z Has data issue: false hasContentIssue false

Formation of Antibody Microarrays on Aluminum Nitride Surface Using Patterned Organosilane Self-Assembled Monolayers

Published online by Cambridge University Press:  31 January 2011

Chi-Shun Chiu
Affiliation:
d929204@oz.nthu.edu.tw, National Tsing-Hua University, Department of Physics, Hsinchu, Taiwan, Province of China
Hong-Mao Lee
Affiliation:
hongmao.li@gmail.com, National Tsing-Hua University, Department of Physics, Hsinchu, Taiwan, Province of China
Shangjr Gwo
Affiliation:
shangjr.gwo@scholarone.com, National Tsing-Hua University, Department of Physics, Hsinchu, Taiwan, Province of China
Get access

Abstract

Surface biofunctionalization of group-III nitride semiconductors has recently attracted much interest due to their biocompatibility, nontoxicity, and long-term chemical stability under demanding physiochemical conditions for chemical and biological sensing. Among III-nitrides, aluminum nitride (AlN) and aluminum gallium nitride (AlGaN) are particularly important because they are often used as the sensing surfaces for sensors based on field-effect transistor or surface acoustic wave sensor structures. Patterned self-assembled monolayer (SAM) templates are composed of two types of organosilane molecules terminated with different functional groups (amino and methyl), which were fabricated on AlN/sapphire substrates by combining photolithography, lift-off process, and self-assembly technique. Clear imaging contrast of SAM micropatterns can be observed by field emission scanning electron microscopy (FE-SEM) operating at a low accelerating voltage in the range of 0.5–1.5 kV. In this work, the formation of green fluorescent protein (GFP) antibody microarrays was demonstrated by the specific protein binding of enhanced GFP (EGFP) labeling. The observed strong fluorescent signal from antibody functionalized regions on the SAM-patterned AlN surface indicates the retained biological activity of specific molecular recognition resulting from the antibody–EGFP interaction. The results reported here show that micropatterning of organosilane SAMs by the combination of photolithographic process and lift-off technique is a practical approach for the fabrication of reaction regions on AlN-based bioanalytical microdevices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cimalla, V., Pezoldt, J., and Ambacher, O., J. Phys. D: Appl. Phys. 40, 63866434 (2007).Google Scholar
2 Stutzmann, M., Garrido, J. A., Eickhoff, M., and Brandt, M. S., Phys. Stat. Sol. A 203, 34243437 (2006).Google Scholar
3 Chaniotakis, N. and Sofikiti, N., Anal. Chim. Acta 615, 19 (2008).Google Scholar
4 Baur, B., Steinhoff, G., Hernando, J., Purrucke, O., Tanaka, M., Nickel, B., Stutzmann, M., and Eickhoff, M., Appl. Phys. Lett. 87, 263901 (2005).Google Scholar
5 Chen, C.-F., Wu, C.-L., and Gwo, S., Appl. Phys. Lett. 89, 252109 (2006).Google Scholar
6 Petoral, R. M., Yazdi, G. R., Spetz, A. L., Yakimova, R., and Uvdal, K., Appl. Phys. Lett. 90, 223904 (2007).Google Scholar
7 Cao, T., Wang, A., Liang, X., Tang, H., Auner, G. W., Salley, S. O., and Ng, K. Y. S., Colloids and Surfaces B: Biointerfaces 63, 176182 (2008).Google Scholar
8 Chiu, C.-S., Lee, H.-M., Kuo, C.-T., and Gwo, S., Appl. Phys. Lett. 93, 163106 (2008).Google Scholar
9 Chiu, C.-S., Lee, H.-M., and Gwo, S., Langmuir (in press).Google Scholar
10 Ulman, A., Chem. Rev. 96, 15331554 (1996).Google Scholar
11 Sagiv, J., J. Am. Chem. Soc, 102, 9298 (1980).Google Scholar
12 Allara, D. L., Parikh, A. N., and Rondelez, F., Langmuir 11, 23572360 (1995).Google Scholar
13 Parikh, A. N., Schivley, M. A., Koo, E., Seshadri, K., Aurentz, D., Mueller, K., and Allara, D. L., J. Am. Chem. Soc. 119, 31353143 (1997).Google Scholar
14 Blawas, A. S. and Reichert, W. M., Biomaterials 19, 595609 (1998).Google Scholar
15 Faucheux, N., Schweiss, R., Lützow, K., and Werner, C., Groth, T. Biomaterials 25, 27212730 (2004).Google Scholar
16 Smith, R. K., Lewis, P. A., and Weiss, P. S., Prog. Surf. Sci. 75, 168 (2004).Google Scholar
17 Lin, M.-H., Chen, C.-F., Shiu, H.-W., Chen, C.-H., and Gwo, S., J. Am. Chem. Soc. 131, 1098410991 (2009).Google Scholar
18 López, G. P., Biebuyck, H. A., and Whitesides, G. M., Langmuir 9, 15131516 (1993).Google Scholar
19 Wollman, E. W., Frisbie, C. D., and Wrighton, M. S., Langmuir 9, 15171520 (1993).Google Scholar
20 Bittermann, A. G., Jacobi, S., Chi, L. F., Fuchs, H., and Reichelt, R., Langmuir 17, 18721877 (2001).Google Scholar
21 Srinivasan, C., Mullen, T. J., Hohman, J. N., Anderson, M. E., Dameron, A. A., Andrews, A. M., Dickey, E. C., Horn, M. W., and Weiss, P. S., ACS Nano 1, 191201 (2007).Google Scholar
22 Hong, L., Sugimura, H., Furukawa, T., and Takai, O., Langmuir 19, 19661969 (2003).Google Scholar
23 López, G. P., Biebuyck, H. A., Härter, R., Kumar, A., and Whitesides, G. M., J. Am. Chem. Soc. 115, 1077410781 (1993).Google Scholar
24 Mack, N. H., Dong, R., and Nuzzo, R. G., J. Am. Chem. Soc. 128, 78717881 (2006).Google Scholar
25 Joy, D. C. and Joy, C. S., Micron 27, 247263 (1996).Google Scholar