Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T19:40:04.249Z Has data issue: false hasContentIssue false

Focused Ion Beam Metrology

Published online by Cambridge University Press:  21 February 2011

A. Wagner
Affiliation:
IBM Research, PO Box 218, Yorktown Heights, NY 10598
P. Blauner
Affiliation:
IBM Research, PO Box 218, Yorktown Heights, NY 10598
P. Longo
Affiliation:
IBM Research, PO Box 218, Yorktown Heights, NY 10598
S. Cohen
Affiliation:
IBM Research, PO Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Focused Ion Beams offer a new method of measuring the size of polymer resist features on integrated circuits. The short penetration range of an ion relative to an electron is shown to offer fundamental advantages for critical dimension (CD) metrology. By confining the polymer damage to the very near surface, ion beams can induce less dimensional change than scanning electron microscopes during the measurement process. This can result in improved CD measurement precision. The erosion rate of polymers to various ion species is also presented, and we show that erosion is non-linear with ion dose. The use of FIB for forming resist cross sections is also demonstrated. An H20 gas assisted etching process for polymers has been developed, and is shown to significantly improve the quality of resist cross sections.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Larrabee, R. D. and Postek, M. T., Solid State Elect. 36, 673 (1993).Google Scholar
2 Allen, R. A., Troceolo, P., Owen III, J. C., Potzick, J. E., and Linholm, L. W., SPIE 1926, 34, (1993).Google Scholar
3 Bennett-Lilley, M., Hiatt, M., Lauchlan, L., Mantalas, L., Rottman, H., Seliger, M., Singh, B., and Yansen, D., SPIE 1464,131 (1991).Google Scholar
4 Jones, S. K., Van Asselt, R. L., Russ, J. C., Dudley, B. W., and Johnson, G. J., SPIE 1261, 53 (1990).Google Scholar
5 Ahmed, T., Chen, S. R., Naguib, H. M., Brunner, T. A., and Stuber, S. M., SPIE 775, 80 (1987).Google Scholar
6 Harris, K., Nadler-Niv, I., Levy, D., SPIE 1261, 18 (1990)Google Scholar
7 Robb, F., SPIE 775, 89 (1987).Google Scholar
8 Postek, M. T., and Joy, D. C., 92, 205 (1987).Google Scholar
9 Russ, J. C., Dudley, B. W., and Jones, S. K., SPIE 1464,10 (1991).Google Scholar
10 Wagner, A., Cohen, S., Longo, P., Blauner, P., to appear in J. Vac. Sci. Technol., Nov/Dec 1995.Google Scholar
11 Erasmus, S. J., J. Vac. Sci. Technol 5, 409 (1987).Google Scholar
12 Samoto, N., Shimizu, R., and Hashimoto, H., J. J. Appl. Phys. 24, 482 (1985).Google Scholar
13 Yamashita, H., Nakajima, K., and Nozue, H., J. Vac. Sci. Technol. 12, 3591 (1994).Google Scholar
14 Mizuno, F. and Yamada, S., to appear in J. Vac. Sci. Technol., Nov/Dec 1995.Google Scholar
15 Ban, H., Nakamura, J., Deguchi, K., and Tanaka, A., J. Vac. Sci. Technol. 12, 3905 (1994).Google Scholar
16 Matsui, S., Nanotechnology 4, 170 (1993).Google Scholar
17 Vasile, M. J., SPIE Vol 1671, 246 (1992).Google Scholar
18 Borzenko, T. B., Koval, Y. I., and Kudryashov, V. A., Micro. Engr. 23, 337 (1994).Google Scholar
19 Chereckdjian, S. and Wilson, I. H., Rad. Effects 98,179 (1986).Google Scholar
20 Merhari, L., Belorgeot, C., and Moliton, J. P., J. Vac. Sci. Technol. 9, 2511 (1991).Google Scholar
21 Brown, W. L., Rad. Effects 98,115(1986).Google Scholar
22 Ward, J. W., Utlaut, M., and Kubena, R. L., J.Vac. Sci. Technol. 5,169 (1987).Google Scholar
23 Kubena, R. L., Stratton, F. P., Ward, J. W., Atkinson, G. M., and Joyce, R. J., J. Vac. Sci. Technol. 7. 1798 (1989).Google Scholar