Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:39:00.372Z Has data issue: false hasContentIssue false

Effect of Sublethal Nickel Chloride Exposure on Crayfish, Astacus leptodactylus Ovary: An Ultrastructural, Autometallographic, and Electrophoretic Analyses

Published online by Cambridge University Press:  10 May 2017

Otilia Zarnescu*
Affiliation:
Laboratory of Histology and Developmental Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, R-050095, Romania
Ana-Maria Petrescu
Affiliation:
Laboratory of Histology and Developmental Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, R-050095, Romania “Grigore Antipa” National Museum of Natural History, Kiseleff 1, Bucharest, R-011341, Romania
Alexandra Gaspar
Affiliation:
Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, Bucharest, R-060031, Romania
Oana Craciunescu
Affiliation:
Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, Bucharest, R-060031, Romania
*
*Corresponding author. otilia.zarnescu@bio.unibuc.ro
Get access

Abstract

Cytological responses in different organs of sentinel organisms have proven to be useful tools for characterizing the health status of those organisms and assessing the impact of environmental contaminants. Our study shows that nickel (II) accumulated in both germ cells (oogonia and developing oocytes) and somatic cells (muscle cells, follicle cells) in the Astacus leptodactylus ovary. Muscle cells from ovarian wall show disorganization and the disruption of cytoplasmic microtubules and pyknosis of the cell nucleus. Follicle cells, both those that surround the developing oocytes and also those that are not associated with the oocytes contained within the cytoplasm vacuoles of different sizes, degenerated mitochondria, myelin bodies, disorganized microtubules, and pyknotic nuclei. The most evident pathological phenomenon was the alteration and disorganization of the basal matrix, which separates the ovarian interstitium from ovarian follicles compartment. Exposure to nickel induces cytoplasmic vacuolation in oogonia and developing oocytes, structural alteration of the developing yolk granules and condensation of the nucleoli. Ultrastructural autometallography has shown grains of silver-enhanced nickel inside the cytoplasm of the muscle cells with altered morphology, including the cytoplasm, nucleus, and basal matrix of the follicle cells, and in intracisternal granules and developing yolk granules of the oocytes.

Type
Micrographia
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adiyodi, R.G. & Subramoniam, T. (1983). Arthropoda-Crustacea. In Adiyodi K.G. & Adiyodi R.G. (Ed.) Reproductive Biology of Invertebrates, vol. 1, Oogenesis, Oviposition, and Oosorption, pp. 443495. Chichester: Wiley.Google Scholar
Alikhan, M.A., Bagatto, G. & Zia, S. (1990). The crayfish as a “biological indicator” of aquatic contamination by heavy metals. Water Res 24, 10691076.CrossRefGoogle Scholar
Alikhan, M.A. & Zia, S. (1989). Nickel uptake and regulation in a copper-tolerant Decapod, Cambarus bartoni (Fabricius) (Decapoda, Crustacea). Bull Environ Contam Toxicol 42, 94102.Google Scholar
Alsop, D., Lall, S.P. & Wood, C.M. (2014). Reproductive impacts and physiological adaptations of zebrafish to elevated dietary nickel. Comp Biochem Physiol C Toxicol Pharmacol 165, 6775.Google Scholar
Andersen, J.K. & Baatrup, E. (1988). Ultrastructural localization of mercury accumulations in the gills, hepatopancreas, midgut and antennal glands of the brown shrimp, Crangon crangon . Aquatic Toxicol 13, 309324.Google Scholar
Arockia Vasanthi, L., Muruganandam, A., Revathi, P., Baskar, B., Jayapriyan, K., Baburajendran, R. & Munuswamy, N. (2014). The application of histo-cytopathological biomarkers in the mud crab Scylla serrata (Forskal) to assess heavy metal toxicity in Pulicat Lake, Chennai. Mar Pollut Bull 81, 8593.Google Scholar
Attig, H., Dagnino, A., Negri, A., Jebali, J., Boussetta, H., Viarengo, A., Dondero, F. & Banni, M. (2010). Uptake and biochemical responses of mussels Mytilus galloprovincialis exposed to sublethal nickel concentrations. Ecotoxicol Environ Saf 73, 17121719.Google Scholar
Baatrup, E., Nielsen, M.G. & Danscher, G. (1986). Histochemical demonstration of two mercury pools in trout tissues: Mercury in kidney and liver after mercuric chloride exposure. Ecotoxicol Environ Saf 12, 267282.Google Scholar
Bagatto, G. & Alikhan, M.A. (1987). Copper, cadmium, and nickel accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada. Bull Environ Contam Toxicol 38, 540545.Google Scholar
Bardeggia, M. & Alikhan, M.A. (1991). The relationship between copper and nickel levels in the diet, and their uptake and accumulation by Cambarus bartoni (Fabricius) (Decapoda, Crustacea). Water Res 25, 11871192.Google Scholar
Beams, H.W. & Kessel, R.G. (1963). Electoron microscopic studies on developing crayfish oocytes with special reference to the origin of yolk. J Cell Biol 18, 621649.Google Scholar
Blewett, T.A. & Wood, C.M. (2015). Salinity-dependent nickel accumulation and oxidative stress responses in the euryhaline killifish (Fundulus heteroclitus). Arch Environ Contam Toxicol 68, 382394.Google Scholar
Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72, 248254.Google Scholar
Brett, J.R. & Zala, C.A. (1975). Daily pattern of nitrogen excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. J Fish Res Board Can 32, 24792486.Google Scholar
Brix, K.V., Keithly, J., DeForest, D.K. & Laughlin, J. (2004). Acute and chronic toxicity of nickel to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23, 22212228.Google Scholar
Costa, M., Salnikow, K., Cosentino, S., Klein, C.B., Huang, X. & Zhuang, Z. (1994). Molecular mechanisms of nickel carcinogenesis. Environ Health Perspect 102, 127130.Google Scholar
Danscher, G. (1984). Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides). Histochemistry 81, 331335.Google Scholar
Danscher, G. & Møller-Madsen, B. (1985). Silver amplification of mercury sulfide and selenide: A histochemical method for light and electron microscopic localization of mercury in tissue. J Histochem Cytochem 33, 219228.Google Scholar
Danscher, G., Stoltenberg, M., Kemp, K. & Pamphlett, R. (2000). Bismuth autometallography: Protocol, specificity, and differentiation. J Histochem Cytochem 48, 15031510.Google Scholar
Dey, S., Rajguru, U., Pathak, D.C. & Goswami, U.C. (2015). Analysis of gill structure from a fresh water fish (Heteropneustes fossilis) exposed to bleached sulfite pulp mill effluents. Microsc Microanal 21, 385391.Google Scholar
Eisler, R. (1998). Nickel hazards to fish, wildlife, and invertebrates: A synoptic review. Biological Science Report 1998–2001. Laurel, MD: US Geological Survey, Biological Resources Division.Google Scholar
Ellen, T.P., Kluz, T., Harder, M.E., Xiong, J. & Costa, M. (2009). Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry 48, 46264632.Google Scholar
Fagerland, J.A., Wall, H.G., Pandher, K., LeRoy, B.E. & Gagne, G.D. (2012). Ultrastructural analysis in preclinical safety evaluation. Toxicol Pathol 40, 391402.Google Scholar
Fontanetti, C.S., Christofoletti, C.A., Pinheiro, T.G., Souza, T.S. & Pedro-Escher, J. (2010). Microscopy as a tool in toxicological evaluations. In Méndez-Vilas A. & Díaz J. (Eds.) Microscopy: Science, Technology, Applications and Education. Formatex. pp. 10011007.Google Scholar
Forgács, Z., Paksy, K., Varga, B., Lazar, P. & Tatrai, E. (1997). Effects of NiSO4 on the ovarian function in rats. CEJOEM 3, 4857.Google Scholar
Gernhofer, M., Pawert, M., Schramm, M., Muller, E. & Triebskorn, R. (2001). Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J Aquat Ecosyst Stress Recov 8, 241260.Google Scholar
Gherardi, F., Barbaresi, S., Vaselli, O. & Bencini, A. (2002). A comparison of trace metal accumulation in indigenous and alien freshwater macro-decapods. Mar Freshwater Behav Physiol 35, 179188.Google Scholar
Gopalakrishnan, S., Thilagam, H. & Raja, P.V. (2007). Toxicity of heavy metals on embryogenesis and larvae of the marine sedentary polychaete Hydroides elegans . Arch Environ Contam Toxicol 52, 171178.Google Scholar
Gopalakrishnan, S., Thilagam, H. & Raja, P.V. (2008). Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans . Chemosphere 71, 515528.Google Scholar
Howe, P.L., Reichelt-Brushett, A.J. & Clark, M.W. (2014a). Effects of Cd, Co, Cu, Ni and Zn on asexual reproduction and early development of the tropical sea anemone Aiptasia pulchella . Ecotoxicology 23, 15931606.Google Scholar
Howe, P.L., Reichelt-Brushett, A.J. & Clark, M.W. (2014b). Development of a chronic, early life-stage sub-lethal toxicity test and recovery assessment for the tropical zooxanthellate sea anemone Aiptasia pulchella . Ecotoxicol Environ Saf 100, 138147.Google Scholar
Hunt, J.W., Anderson, B.S., Phillips, B.M., Tjeerdema, R.S., Puckett, H.M., Stephenson, M., Tucker, D.W. & Watson, D. (2002). Acute and chronic toxicity of nickel to marine organisms: Implications for water quality criteria. Environ Toxicol Chem 21, 24232430.Google Scholar
Jayaseelan, C., Abdul Rahuman, A., Ramkumar, R., Perumal, P., Rajakumar, G., Vishnu Kirthi, A., Santhoshkumar, T. & Marimuthu, S. (2014). Effect of sub-acute exposure to nickel nanoparticles on oxidative stress and histopathological changes in Mozambique tilapia, Oreochromis mossambicus . Ecotoxicol Environ Saf 107, 220228.Google Scholar
Käkelä, R., Käkelä, A. & Hyvärinen, H. (1999). Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123, 2737.Google Scholar
Kang, X., Mu, S., Li, W. & Zhao, N. (2012). Toxic effect of cadmium on crabs and shrimps. Toxic Drugs Test 4, 221236.Google Scholar
Khan, A.T., Forester, D.M. & Mielke, H.W. (1995). Heavy metal concentrations in two populations of crayfish. Vet Hum Toxicol 37, 426428.Google Scholar
Khan, S. & Nugegoda, D. (2003). Australian freshwater crayfish Cherax destructo accumulates and depurates nickel. Bull Environ Contam Toxicol 70, 308314.Google Scholar
Kharat, P.S., Ghoble, L.B., Shejule, K.B., Kale, R.S. & Ghoble., B.C. (2009). Impact of TBTCl on total protein content in freshwater prawn, Macrobrachium kistnensis . Middle East J Sci Res 4, 180184.Google Scholar
Kienle, C., Kohler, H.R. & Gerhardt, A. (2009). Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotoxicol Environ Saf 72, 17401747.Google Scholar
Kindle, H., Lanzrein, B. & Kunkel, J.G. (1990). The effect of ions, ion channel blockers, and ionophores on uptake of vitellogenin into cockroach follicles. Dev Biol 142, 386391.Google Scholar
Kong, L., Tang, M., Zhang, T., Wang, D., Hu, K., Lu, W., Wei, C., Liang, G. & Pu, Y. (2014). Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. Int J Mol Sci 15, 2125321269.Google Scholar
Kročková, J., Massányi, P., Sirotkin, A.V., Lukáč, N. & Kováčik, A. (2013). Nickel-induce structural and functional alterations in porcine granulosa cells in vitro . Biol Trace Elem 154, 190195.Google Scholar
Kuklina, I., Kouba, A., Buřič, M., Horká, I., Duriš, Z. & Kozák, P. (2014). Accumulation of heavy metals in crayfish and fish from selected Czech reservoirs. Biomed Res Int 2014, 306103.Google Scholar
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.Google Scholar
Laporte, J.M., Truchot, J.P., Mesmer-Dudons, N. & Boudou, A. (2002). Bioaccumulation of inorganic and methylated mercury by the gills of the shore crab Carcinus maenas: Transepithelial fluxes and histochemical localization. Mar Ecol Prog Ser 231, 215228.CrossRefGoogle Scholar
Laulicht, F., Brocato, J., Ke, Q. & Costa, M. (2015). Carcinogenicity of metal compounds. In Handbook on the Toxicology of Metals, 4th ed. Nordberg, G.F., Fowler, B.A. & Nordberg, M. (Eds.), pp. 351378. Amsterdam: Elsevier, Academic Press.Google Scholar
Lee, Y.W., Klein, C.B., Kargacin, B., Salnikow, K., Kitahara, J., Dowjat, K., Zhitkovich, A., Christie, N.T. & Costa, M. (1995). Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: A new model for epigenetic carcinogens. Mol Cell Biol 15, 25472557.Google Scholar
Li, W., Zhao, Y. & Chou, I.N. (1993). Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 6579.Google Scholar
Lin, K.C. & Chou, I.N. (1990). Studies on the mechanisms of Ni2+-induced cell injury: I. Effects of Ni2+ on microtubules. Toxicol Appl Pharmacol 106, 209221.Google Scholar
Mackevičienė, G. (2002). Bioaccumulation of heavy metals in noble crayfish (Astacus astacus L.) tissues under aquaculture conditions. Ekologia 2, 7982.Google Scholar
Marigomez, J.A., Soto, M., Carajaville, M.P., Angulo, E. & Giamberini, L. (2002). Cellular and subcellular distribution of metals in mollusks. Microsc Res Tech 56, 358392.Google Scholar
Massar, B., Dey, S., Barua, R. & Dutta, K. (2012). Microscopy and microanalysis of hematological parameters in common carp, Cyprinus carpio, inhabiting a polluted lake in North East India. Microsc Microanal 18, 10771087.Google Scholar
Massar, B., Dey, S. & Dutta, K. (2014). Micro structure analysis of the ovaries of common carp, Cyprinus carpio L. inhabiting a polluted reservoir, Umiam in Meghalaya, India. Microsc Microanal 20, 14041410.Google Scholar
Meusy, J.J. (1980). Vitellogenin, the extraovarian precursor of the protein yolk in Crustacea: A review. Reprod Nutr Dev 20, 121.Google Scholar
Mohammed, E.H., Wang, G. & Jiang, J. (2010). The effects of nickel on the reproductive ability of three different marine copepods. Ecotoxicology 19, 911916.Google Scholar
Mwangi, S.M. & Alikhan, M.A. (1993). Cadmium and nickel uptake by tissues of Cambarus bartoni (Astacidae, Decapoda, Crustacea): Effects on copper and zinc stores. Water Res 27, 921927.Google Scholar
Nagy, G., Laza, D., Ujvárosi, K. & Bánfalvi, G. (2011). Chromatin toxicity of Ni(II) ions in K562 erythroleukemia cells. In Cellular Effects of Heavy Metals, Bánfalvi, G. (Ed.), pp. 163178. New York: Springer.CrossRefGoogle Scholar
Nath, K. & Kumar, N. (1990). Gonadal histopathology following nickel intoxication in the giant gaurami Colisa fasciatus (Bloch and Schneider), a freshwater tropical perch. Bull Environ Contam Toxicol 45, 299304.Google Scholar
Novelli, A.A., Losso, C., Ghetti, P.F. & Ghirardini, A.V. (2003). Toxicity of heavy metals using sperm cell and embryo toxicity bioassays with Paracentrotus lividus (Echinodermata: Echinoidea): Comparisons with exposure concentrations in the Lagoon of Venice, Italy. Environ Toxicol Chem 22, 12951301.CrossRefGoogle ScholarPubMed
Pane, E.F., McGeer, J.C. & Wood, C.M. (2004). Effects of chronic waterborne nickel exposure on two successive generations of Daphnia magna . Environ Toxicol Chem 23, 10511056.Google Scholar
Petrescu, AM., Moldovan, L. & Zarnescu, O. (2016). Morphology and ultrastructure of the somatic cells in Astacus leptodactylus ovary. J Morphol 277, 118127.Google Scholar
Phillips, B.M., Nicely, P.A., Hunt, J.W., Anderson, B.S., Tjeerdema, R.S., Palmer, S.E., Palmer, F.H. & Puckett, H.M. (2003). Toxicity of cadmium-copper-nickel-zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bull Environ Contam Toxicol 70, 592599.Google Scholar
Rao, M.V., Chawla, S.L. & Sharma, S.R. (2009). Protective role of vitamin E on nickel and/or chromium induced oxidative stress in the mouse ovary. Food Chem Toxicol 47, 13681371.Google Scholar
Reichelt-Brushett, A.J. (1998). The lethal and sublethal effects of selected trace metals on various life stages of scleractinian corals. PhD Thesis. Southern Cross University, Lismore, Australia, 228pp.Google Scholar
Reichelt-Brushett, A. & Hudspith, M. (2016). The effects of metals of emerging concern on the fertilization success of gametes of the tropical scleractinian coral Platygyra daedalea . Chemosphere 150, 398406.Google Scholar
Reynolds, J. & Souty-Grosset, C. (2012). Management of Freshwater Biodiversity: Crayfish as Bioindicators. Cambridge, MA: University Press.Google Scholar
Schilderman, P.A., Moonen, E.J.C., Maas, L.M., Welle, I. & Kleinjans, J.C.S. (1999). Use of crayfish in biomonitoring studies of environmental pollution of the river Meuse. Ecotoxicol Environ Saf 44, 241252.Google Scholar
Schramm, M., Behrens, A., Braunbeck, T., Eckwert, H., Kohler, H.R., Konradt, J., Muller, E., Pawert, M., Schwaiger, J., Segner, H. & Triebskorn, R. (2000). Cellular, histological and biochemical biomarkers. In Biomonitoring of Polluted Water, Gerhardt, A. (Ed.), pp. 3363. Boca Raton, FL: Lewis Publishers.Google Scholar
Sen, P. & Costa, M. (1985). Induction of chromosomal damage in chinese hamster ovary cells by soluble and particulate nickel compounds: Preferential fragmentation of the heterochromatic long arm of the X-chromosome by carcinogenic crystalline NiS particles. Cancer Res 45, 23202325.Google ScholarPubMed
Shiao, Y.H., Lee, S.H. & Kasprzak, K.S. (1998). Cell cycle arrest, apoptosis and p53 expression in nickel(II) acetate-treated Chinese hamster ovary cells. Carcinogenesis 19, 12031207.Google Scholar
Sioson, L.C. & Herrera, A. (1995–1996). Impact of nickel intoxication on ovarian histology in Oreochromis mossambicus . Sci Diliman 7, 1421.Google Scholar
Soto, M., Cajaraville, M.P., Angulo, E. & Marigómez, I. (1996). Autometallographic localization of protein-bound copper and zinc in the common winkle, Littorina littorea: A light microscopical study. Histochem J 28, 689701.Google Scholar
Stoltenberg, M. & Danscher, G. (2000). Histochemical differentiation of autometallographically traceable metals (Au, Ag, Hg, Bi, Zn): Protocols for chemical removal of separate autometallographic metal clusters in Epon sections. Histochem J 32, 645652.Google Scholar
Taylor, N.S., Kirwan, J.A., Johnson, C., Yan, N.D., Viant, M.R., Gunn, J.M. & McGeer, J.C. (2016). Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles. Environ Pollut 212, 325329.Google Scholar
Templeton, D.M. (1987a). Interaction of toxic cations with the glomerulus: Binding of Ni to purified glomerular basement membrane. Toxicology 43, 115.Google Scholar
Templeton, D.M. (1987b). Metal-binding properties of the isolated glomerular basement membrane. Biochim Biophys Acta 926, 94105.Google Scholar
Timm, F. (1962). Histochemische lokalisation und nachweis der schwermetalle. Acta Histochem 46(Suppl 3), 706711.Google Scholar
Vandenbrouck, T., Soetaert, A., Van Der Ven, K., Blust, R. & De Coen, W. (2009). Nickel and binary metal mixture responses in Daphnia magna: Molecular fingerprints and (sub) organismal effects. Aquat Toxicol 92, 1829.Google Scholar
Wigginton, A.J. & Birge, W.J. (2007). Toxicity of cadmium to six species in two genera of crayfish and the effect of cadmium on molting success. Environ Toxicol Chem 26, 548554.Google Scholar
Zarnescu, O. (2009). Tracing the accumulation and effects of mercury uptake in the previtellogenic ovary of crucian carp, Carassius auratus gibelio by autometallography and caspase-3 immunohistochemistry. Histol Histopathol 24, 141148.Google ScholarPubMed
Zarnescu, O., Mester, R., Oancea, A. & Buzgariu, W. (1997). Electrophoretic patterns of yolk proteins during oocyte development of crucian carp, Carassius auratus gibelio . Rev Roum Biol Biol Anim 42, 167172.Google Scholar
Zia, S. & Alikhan, M.A. (1989). A laboratory study of the copper and nickel uptake and regulation in a copper-tolerant decapod, Cambarus bartoni (Fabricius) (Decapoda, Crustacea). Arch Int Physiol Biochim 97, 211219.Google Scholar