Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T23:19:22.438Z Has data issue: false hasContentIssue false

High Temperature Resistant Intermetallic Nial-Based Alloys with Refractory Metals Cr, Mo, Re - Structures - Properties - Applications -

Published online by Cambridge University Press:  11 February 2011

G. Frommeyer
Affiliation:
Department of Materials Technology, Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, D-40237 Duesseldorf, Germany
R. Rablbauer
Affiliation:
Department of Materials Technology, Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, D-40237 Duesseldorf, Germany
Get access

Abstract

The stoichiometric intermetallic compound NiAl with B2 superlattice structure exhibits superior physical and high-temperature mechanical properties, and excellent oxidation resistance. The main disadvantages of polycrystalline NiAl are the lack in plasticity and fracture toughness below the brittle-to-ductile-transition temperature of about 550°C. Insufficient high-temperature strength and creep resistance occur at temperatures above 800°C. Despite these facts NiAl-based alloys are still considered as promising structural materials for high-temperature applications. The refractory metals Cr, Mo, and Re with b.c.c. and h.c.p. lattice structures form with NiAl quasi-binary eutectic systems, showing high melting temperatures and thermally stable microstructures. Elasticity, solid solution hardening, fibre reinforcement, and creep properties were investigated in view of the constitutional defect structure and microstructural features. Especially the fibre reinforced NiAl matrix composites possess optimum high-temperature strength up to 1200 °C, and improved creep resistance as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terada, Y., Ohkubo, K., Nakagawa, K., Mohri, T., and Suzuki, T., Intermetallics 3, 347 (1995).Google Scholar
2. Grabke, H. J., Intermetallics 7, 1153 (1999).Google Scholar
3. Rablbauer, R., Frommeyer, G., and Stein, F., Mater. Sci. Eng. A 343, 301 (2003).Google Scholar
4. Miracle, D. B., Darolia, R., “NiAl and its Alloys,” Intermetallic Compounds: v.2.Practice, ed. Westbrook, J. H. and Fleischer, R. L., (John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, 1994) pp. 5372.Google Scholar
5. Noebe, R. D., Bowman, R. R., Nathal, M. V., “The Physical and Mechanical Metallurgy of NiAl,” Physical Metallurgy and Processing of Intermetallic Compounds, ed. Stoloff, N. S. and Sikka, V. K., (Chapman & Hall, New York, NY, 1996) pp. 212296.Google Scholar
6. Scheppe, F., Sahm, P. R., Hermann, W., Paul, U., and Preuss, J., Mater. Sci. Eng. A 329, 596 (2002).Google Scholar
7. Liu, Z. G., Frommeyer, G., and Kreuss, M., Surf. Sci. 246, 272 (1991).Google Scholar
8. Cooper, M. J., Phil. Mag. A 8, 805 (1963).Google Scholar
9. Jacobi, H., Vassos, B., and Engell, H. J., J. Phys. Chem. Solids 30, 1261 (1969).Google Scholar
10. Frommeyer, G. and Derder, C., J. de Physique 7, 2393 (1997).Google Scholar
11. Fraser, H. L., Loretto, M. H., Smallman, R. E., and Wasilewski, R. J., Philos. Mag. A 32, 873 (1975).Google Scholar
12. Hong, T. and Freeman, A. J., Phys. Rev. B 43, 6446 (1991).Google Scholar
13. Fu, C. L. and Yoo, M. H., Acta Metall. Mater. 40, 703 (1992).Google Scholar
14. Walter, J. L. and Cline, H. E., Metall. Trans. 1, 1221 (1970).Google Scholar
15. Walter, J. L. and Cline, H. E., Metall. Trans. 4, 33 (1973).Google Scholar
16. Johnson, D. R., Joslin, S. M., Oliver, B. F., Noebe, R. D., and Whittenberger, J. D., in Intermetallic-Metallic Polyphase In-Situ Composites, edited by Miracle, D. B., Graves, J. and Anton, D. L. (Mater. Res. Soc. Conf. Proc., 273, Pittsburgh, PA, 1992), pp. 8792.Google Scholar
17. Heredia, F. E., He, M. Y., Lucas, G. E., Evans, A. G., and Dève, H. E., Acta Metall. Mater. 41, 505 (1993).Google Scholar
18. Johnson, D. R., Chen, X. F., Oliver, B. F., Noebe, R. D., and Whittenberger, J. D., Intermetallics 3, 99 (1995).Google Scholar
19. Chen, X. F., Johnson, D. R., Noebe, R. D., and Oliver, B. F., J. Mater. Res. 10, 1159 (1995).Google Scholar
20. Jiang, D. T. and Guo, J. T., Mater. Sci. Eng. A 225, 154 (1998).Google Scholar
21. Guo, J. T., Cui, C. Y., Chen, Y. X., Li, D. X., and Ye, H. Q., Intermetallics 9, 287 (2001).Google Scholar
22. Miller, M. K., Anderson, I. M., and Russell, K. F., Appl. Surf. Sci. 94–95, 288 (1996).Google Scholar
23. Huang, W. and Chang, Y. A., Mater. Sci. Eng. A 259, 110 (1999).Google Scholar
24. Merchant, S. and Notis, M. R., Mater. Sci. Eng. A 66, 47 (1984).Google Scholar
25. Maslenkov, S. B., Udovskii, A. L., Burova, N. N., and Rodimkina, V. A., Izvestiya Akademii Nauk SSSR Metally 1, 198 (1986).Google Scholar
26. Wesemann, J., Charakterisierung der atomaren Fehlordnung in γ-TiAl-Basislegierungen, Diss., TU Clausthal, MPIE Duesseldorf (1996).Google Scholar
27. Tian, W. H., Han, C. S., and Nemoto, M., Intermetallics 7, 59 (1999).Google Scholar
28. Fischer, R., Frommeyer, G., and Schneider, A., Mater. Sci. Eng. A 327, 47 (2002).Google Scholar
29. Medvedea, N. I., Gornostyrev, Y. N., Novikov, D. L., Mryasov, O. N., and Freeman, A. J., Acta Mater. 46, 3433 (1998).Google Scholar
30. Rablbauer, R., Fischer, R., Deges, J., Schneider, A., and Frommeyer, G., in EUROMAT Conf. Proc., edited by (Associazione Italiana di Metallurgia und Federation of European Materials Societies Conf. Proc., 2001), pp. 110.Google Scholar
31. Schäfer, H.-J., Entwicklung und Eigenschaftscharakterisierung hochwarmfester Werkstoffe mit intermetallischer NiAl-Matrix, (VDI Verlag, Diss. RWTH Aachen, Düsseldorf, 1997).Google Scholar
32. Nawaz, M. H. A. and Mordike, B. L., Phys. Status Solidi (a) 32, 449 (1975).Google Scholar
33. Sesták, B. and Seeger, A., Z. Metallkd. 58, 831 (1967).Google Scholar