Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T11:28:05.593Z Has data issue: false hasContentIssue false

The Use of Tertiarybutylphosphine and Tertiarybutylarsine for the Metalorganic Molecular Beam Epitaxial Growth of Resonant Tunneung Devices

Published online by Cambridge University Press:  26 February 2011

E. A. Beam III
Affiliation:
Texas Instalments Incorporated, Central Research Laboratories, M/S 147, Dallas, TX 75265, USA
A. C. Seabaugh
Affiliation:
Texas Instalments Incorporated, Central Research Laboratories, M/S 147, Dallas, TX 75265, USA
Get access

Abstract

We report on the use of thermally-cracked tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBA) with elemental Ga, In, and Al sources for the MOMBE growth of InP-based resonant tunneling diode (RTD) and resonant tunneling bipolar transistor (RTBT) structures. We have systematically examined the effects of growth conditions and heterostructure modifications on the InP/lnGaAs RTD including the use of pseudomorphic (InGa)P barriers and, in addition, explored for the first time, InP quantum well RTDs using both AlAs and InGaP barriers. Cross-sectional transmission electron microscopy has been used to correlate the structural quality with the electrical characteristics for both lattice-matched and pseudomorphic layers composed of InAs, AlAs, and InGaP. We also demonstrate the first use of mixed InP/lnGaAs and AlAs/lnGaAs heterojunctions in the RTBT. These transistors exhibit room temperature negative transconductance and a peak-to-valley current ratio of 35, the highest yet observed In the RTBT.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bate, R. T., Nanotechnol., 1, 1 (1990).Google Scholar
[2] Lee, C. D. and Forrest, S. R., Appl. Phys. Lett, 57, 469 (1990).Google Scholar
[3] Kim, T. S., Bayraktaroglu, B., Henderson, T. S. and Plumton, D. L., Appl. Phys. Lett., 58, 1997 (1991).Google Scholar
[4] Lum, R. M., Klingert, J. K. and Lamont, M. G., Appl. Phys. Lett., 50, 284 (1987).CrossRefGoogle Scholar
[5] Kellert, F. G., Whelan, J. S. and Chan, K. T., J. Electronic Mat., 18, 355 (1989).Google Scholar
[6] Ritter, D., Panish, M. B., Hamm, R. A., Gershoni, D. and Brener, I., Appl. Phys. Lett., 56, 1548 (1990).Google Scholar
[7] Beam III, E. A., Henderson, T. S., Seabaugh, A. C. and Yang, J. Y., accepted to J. of Crystal Growth.Google Scholar
[8] Razeghi, M., Tadella, A., Davies, R. A., Long, A. P., Kelly, M. J., Britton, E., Boothroyd, C., and Stobbs, W. M., Electronics Lett., 23, 117 (1987).Google Scholar
[9] Vuong, T. H. H., Tsui, D. C., and Tsang, W. T., Appl. Phys. Lett., 50, 1004 (1987).Google Scholar
[10] Broekaert, T. P. E., Lee, W., and Fonstad, C. G., Appl. Phys. Lett., 53, 1545 (1988).CrossRefGoogle Scholar
[11] Seabaugh, A. C., Kao, Y. C., Randall, J. N., Frensley, W. R. and Khatibzadeh, M. A., Jpn. J. Appl. Phys., (1991).Google Scholar
[12]G Capasso, F., Sen, S., and Bertram, F., High Speed Semiconductor Devices, ed. by Sze, S. M. (John Wiley & Sons, NY 1990), 465.Google Scholar
[13] Luscombe, J. H. and Frensley, W. R., Nanotechnol., 1, 131, (1990).Google Scholar
[14] Capasso, F., Sen, S., Cho, A. Y., and Sivco, D. L., Appl. Phys. Lett. 53, 1056 (1988).CrossRefGoogle Scholar
[15] Lunardi, L. M., Sen, S., Capasso, F., Smith, P. R., Sivco, D. L., and Cho, A. Y.., IEEE Electron Dev. Lett. 10, 219 (1989).Google Scholar