Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T00:23:24.081Z Has data issue: false hasContentIssue false

Climatic Signature and Radiocarbon Chronology of Middle and Late Pleniglacial Loess from Eurasia: Comparison with the Marine and Greenland Records

Published online by Cambridge University Press:  18 July 2016

P Haesaerts*
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautier Str. 29, B-1000 Brussels, Belgium
I Borziac
Affiliation:
Institute of Archaeology, Kichinau, Moldavian Republic
V P Chekha
Affiliation:
Institute of Archaeology and Ethnography, Academgorodog, 660036 Krasnoyarsk, Russia
V Chirica
Affiliation:
Institute of Archaeology, Catargui Str. 18, 6600 Iasi, Romania
F Damblon
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautier Str. 29, B-1000 Brussels, Belgium
N I Drozdov
Affiliation:
Institute of Archaeology and Ethnography, Academgorodog, 660036 Krasnoyarsk, Russia
L A Orlova
Affiliation:
United Institute of Geology, Geophysics and Mineralogy, 630090 Novosibrisk, Russia
S Pirson
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautier Str. 29, B-1000 Brussels, Belgium
J van der Plicht
Affiliation:
Centre for Isotope Research, Groningen University, Nijenborgh, 9747 AG Groningen, the Netherlands. Also: Faculty of Archaeology, Leiden University, PO Box 9515, 2300RA Leiden, the Netherlands
*
Corresponding author. Email: paul.haesaerts@naturalsciences.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent investigations devoted to the Eurasian loess formations have provided an integrated high-resolution climatic sequence well radiocarbon dated between 13.4 and 42.5 kyr BP on charcoal and wood remains. Here, we show that the reproducible climatic signature of this loess sequence can be compared by proxy-correlation with the Greenland ice climatic signals, taking into account the distribution of the aeolian components in both records. This correlation allows situating with precision the series of 14C dates obtained from loess with regard to the Greenland climatic sequence. In this way, comparing the atmospheric loess-derived 14C chronology with the chronologies of the marine sequences becomes possible.

Type
Calibration
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Allen, JRM, Brandt, U, Brauer, A, Hubberten, H-W, Huntley, B, Keller, J, Kraml, M, Mckensen, A, Mingram, J, Negendank, JFW, Nowaczyk, NR, Oberhänsli, H, Watts, WA, Wulf, S, Zolitschka, B. 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature 400(6746):740–3.CrossRefGoogle Scholar
Andersen, KK, Svensson, A, Johnsen, SJ, Rasmussen, SO, Bigler, M, Rothlisberger, R, Ruth, U, Siggaard-Andersen, ML, Steffensen, JP, Dahl-Jensen, D, Vinther, BM, Clausen, HB. 2006. The Greenland Ice Core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25(23–24):3246–57.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.Google Scholar
Bard, E, Rostek, F, Ménot-Combes, G. 2004. Radiocarbon calibration beyond 20,000 year 14C B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204–14.Google Scholar
Beck, JW, Richards, DA, Edward, RL, Silverman, BW, Smart, PL, Donahue, DJ, Herrera-Osterheld, S, Burr, GS, Calsoyas, L, Jull, ATJ, Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292(5526):2453–8.CrossRefGoogle ScholarPubMed
Bond, G, Broecker, W, Johnsen, S, McManus, J, Labeyrie, L, Jouzel, J, Bonani, G. 1993. Correlations between climate from North Atlantic sediments and Greenland ice. Nature 365(6442):143–7.CrossRefGoogle Scholar
Borziac, IA. 1993. Les chasseurs de renne de Kosoioutsy, site paléolithique tardif à plusieurs niveaux sur le Dniestr moyen (rapport préliminaire). L'anthropologie (Paris) 97(2–3):331–6. In French.Google Scholar
Chernysh, AP. 1987. The standard multilayered site Molodova V. Archaeology. In: Ivanova, IK, Tzeitlin, SM, editors. The Multilayered Palaeolithic Site Molodova V. The Stone Men and Environment. Moscow: Nauka. p 793. In Russian.Google Scholar
Chirica, V. 2001. Gisements paléolithiques de Mitoc. Le Paléolithique Supérieur de Roumanie à la lumière des découvertes de Mitoc. Bibliotheca Archaeologica Iassiensis (Iasi) 11. 216 p. In French.Google Scholar
Chlachula, J. 2003. The Siberian loess record and its significance for reconstruction of Pleistocene climate in north-central Asia. Quaternary Science Reviews 22(18–19):1879–906.Google Scholar
Conard, NJ, Bolus, M. 2003. Radiocarbon dating and the appearance of modern humans and timing of cultural innovations in Europe: new results and new challenges. Journal of Human Evolution 44(3):331–71.Google Scholar
Damblon, F, Haesaerts, P, van der Plicht, J. 1996. New datings and considerations on the chronology of Upper Palaeolithic sites in the Great Eurasian Plain. Préhistoire Européenne 9:177231.Google Scholar
de Beaulieu, J-L, Reille, M. 1984. A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13(2):111–32.Google Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):1781–96.Google Scholar
Grootes, PM, Stuiver, M. 1997. Oxygen 18/16 variability in Greenland snow and ice with 10–3 to 10–5-year time resolution. Journal of Geophysical Research 102(C12):26,45570.CrossRefGoogle Scholar
Haesaerts, P. 1974. Séquences paléoclimatiques du Pléistocène supérieur du bassin de la Haine. Annales de la Société géologique de Belgique (Liège) 97:105–37. In French.Google Scholar
Haesaerts, P. 1984. Stratigraphic distribution of periglacial features indicative of permafrost in the Upper Pleistocene loesses of Belgium. In: Permafrost, Fourth International Conference, Proceedings. Washington DC: National Academy Press. p 421–6.Google Scholar
Haesaerts, P. 1985. Les loess du Pléistocène supérieur en Belgique. Comparaisons avec les séquences d'Europe centrale. Bulletin de l'Association Française pour l'Etude du Quaternaire (Paris) 22–23(2–3):105–15. In French.CrossRefGoogle Scholar
Haesaerts, P. 2007. Mitoc-Malu Galben: cadre stratigraphique et chronologique. In: Otte, M, Haesaerts, P, Chirica, V, editors. L'Aurignacien et le Gravettien de Mitoc-Malu Galben (Moldavie roumaine). Liège: ERAUL. p 1541. In French.Google Scholar
Haesaerts, P, van Vliet, B. 1974. Compte rendu de l'excursion du 25 mai 1974 consacrée à la stratigraphie des limons aux environs de Mons. Annales de la Société Géologique de Belgique (Liège) 97:547–60. In French.Google Scholar
Haesaerts, P, van Vliet-Lanoë, B. 1981. Phénomènes périglaciaires observés à Harmignies, à Maisières-Canal et à Rocourt (Belgique). Biuletyn Peryglacjalny (Lodz) 28:291324. In French.Google Scholar
Haesaerts, P, Damblon, F, Bachner, M, Trnka, G. 1996. Revised stratigraphy and chronology of the Willendorf II sequence, Lower Austria. Archaeologia Austriaca (Vienna) 80:2542.Google Scholar
Haesaerts, P, Borziac, IA, Chirica, V, Damblon, F, Koulakovska, L, van der Plicht, J. 2003. The East Carpathian loess record: a reference for the middle and late pleniglacial stratigraphy in central Europe. Quaternaire (Paris) 14(3):163–88. http://quaternaire.revues.org/.Google Scholar
Haesaerts, P, Chekha, VP, Damblon, F, Drozdov, NI, Orlova, LA, van der Plicht, J. 2005. The loess-palaeosol succession of Kurtak (Yenisei Basin, Siberia): a reference record for the Karga Stage (MIS 3). Quaternaire (Paris) 16(1):324. http://quaternaire.revues.org/.Google Scholar
Haesaerts, P, Borziac, IA, Chirica, V, Damblon, F, Koulakovska, L. 2007. Cadre stratigraphique et chronologique du Gravettien en Europe centrale. Paléo (Bordeaux) 19:2950. In French.Google Scholar
Hughen, KA, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the part 50,000 years. Science 303(5655):202–7.Google Scholar
Hughen, KA, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated for the Cariaco Basin. Quaternary Science Reviews 25(23–24):3216–27.Google Scholar
Ivanova, IK, Tzeitlin, SM. 1987. The Multilayered Palaeolithic Site Molodova V. The Stone Men and Environment. Moscow: Nauka. 187 p. In Russian.Google Scholar
Jöris, O, Weninger, B. 1999. Possibilities of calendric conversion of radiocarbon data for the glacial periods. In: Evin, J, Oberlin, C, Daugas, JP, Salles, JF, editors. Actes du 3ème congrès international Archéologie et 14C, Lyon, 6–10 avril 1998. Mémoires de la Societé Préhistorique Française 26:8792.Google Scholar
Meese, DA, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102(C12) 26:411–23.CrossRefGoogle Scholar
Otte, M, Haesaerts, P, Chirica, V, editors. 2007. L'Aurignacien et le Gravettien de Mitoc-Malu Galben (Moldavie roumaine). Liège: ERAUL. 233 p. In French.Google Scholar
Ram, M, Koenig, G. 1997. Continuous dust concentration profile of pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core: dust stadials, interstadials, and Eemian. Journal of Geophysical Research 102(C12):26,6418.Google Scholar
Reille, M, de Beaulieu, J-L. 1990. Pollen analysis of a long Upper Pleistocene continental sequence in a Velay maar (Massif Central, France). Palaeogeography, Palaeoclimatology, Palaeoecology 80(1):3548.Google Scholar
Reimer, PJ, Hughen, KA, Guilderson, TP, McCormac, G, Baillie, MGL, Bard, E, Barratt, P, Beck, JW, Buck, CE, Damon, PE, Friedrich, M, Kromer, B, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, van der Plicht, J. 2004. Preliminary report of the first workshop of the IntCal04 radiocarbon comparison/calibration working group. Radiocarbon 44(3):653–61.Google Scholar
Salvador, A, editor. 1994. International Stratigraphic Guide. A Guide to Stratigraphic Classification, Terminology, and Procedure. 2nd edition. Boulder: Geological Society of America. 214 p.Google Scholar
Shackleton, NJ, Fairbanks, RG, Chiu, T-C, Parrenin, F. 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quaternary Science Reviews 23(14–15):1513–22.Google Scholar
Stuiver, M, Grootes, PM. 2000. GISP oxygen isotope ratios. Quaternary Research 53(3):277–84.CrossRefGoogle Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, SM, Johnsen, SJ, Muscheler, R, Rasmussen, SO, Röthlisberger, R, Steffsensen, JP, Vinther, BM. 2006. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25(23–24):3258–67.CrossRefGoogle Scholar
Svoboda, J, Ložek, V, Vlček, E. 1996. Hunters between East and West: The Paleolithic of Moravia. New York: Plenum. 295 p.CrossRefGoogle Scholar
Valoch, K. 1976. Die altsteinzeitliche Fundstelle in Brno-Bohunice. Brno: Ceskoslovenske Akademie ved Studie Archeologickeho ustavu Ceskoslovenske Akademie ved v brne, 4. 120 p. In German.Google Scholar
van Andel, TH. 1998. Middle and Upper Palaeolithic environments and the calibration of 14C dates beyond 10,000 BP. Antiquity 72(275):2633.Google Scholar
van der Plicht, J, Beck, JW, Bard, E, Baillie, MGL, Blackwell, PG, Buck, CE, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Richards, DA, Southon, JR, Stuiver, M, Weyhenmeyer, CE. 2004. NotCal04—comparison/calibration 14C records 26–50 cal kyr BP. Radiocarbon 46(3):1225–38.CrossRefGoogle Scholar
van Krefeld, S, Sarnthein, M, Erlenkeuser, H, Grootes, P, Jung, S, Nadeau, M-J, Pflaumann, U, Voelker, A. 2000. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in Irminger Sea, 60–18 kyr. Palaeoceanography 15(4):425–42.Google Scholar
van Vliet-Lanoë, B. 1976. Traces de glace de ségrégation en lentilles associées aux sols et phénomènes périglaciaires fossiles. Biuletyn Periglacjalny (Lodz) 26:4255. In French.Google Scholar
van Vliet-Lanoë, B. 1986. Le pédocomplexe du dernier glaciaire (de 125 000 à 75 000 B.P.). Variations de faciès et signification paléoclimatique du sud de la Pologne à l'ouest de la Bretagne. Bulletin de l'Association française pour l'étude du Quaternaire (Paris) 1–2:139–50. In French.Google Scholar
Velichko, AA. 1992. Correlation of the Late Pleistocene events within glaciated areas of Northern Hemisphere. In: Frenze, B, Pecsi, M, Velichko, AA, editors. Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. Late Pleistocene-Holocene. Budapest: Geographical Research Institute, Hungarian Academy of Sciences. p 101–05.Google Scholar
Voelker, AHL, Grootes, PM, Nadeau, M-J, Sarnthein, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the Earth's magnetic field intensity. Radiocarbon 42(3):437–52.Google Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5450):2345–8.Google Scholar
Watts, WA, Allen, JRM, Huntley, B. 1996. Vegetation history and palaeoclimate of the last glacial period at Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews 15(2–3):133–53.Google Scholar
Zander, A, Frechen, M, Zykinac, V, Boenigk, W. 2003. Luminescence chronology of the Upper Pleistocene loess record at Kurtak in Middle Siberia. Quaternary Science Reviews 22(10–13):9991010.Google Scholar