Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T19:36:15.606Z Has data issue: false hasContentIssue false

Structural Evolution of Nickel Doped Zinc Oxide Nanostructures

Published online by Cambridge University Press:  08 August 2013

Navendu Goswami
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, A-10, Sec. 62, Noida -201307, India.
Anshuman Sahai
Affiliation:
Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, A-10, Sec. 62, Noida -201307, India.
Get access

Abstract

In this article, structural evolution in nickel doped zinc oxide nanostructures is reported. The ZnO nanostructures are synthesized with 1-10% of Ni doping adopting a chemical precipitation method. The undoped and doped nanostructures thus prepared, were systematically investigated employing X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM/SEM), Fourier transform infrared (FTIR) and micro-Raman spectroscopy (μRS). The identification of wurtzite phase and determination of lattice parameters of Ni doped ZnO nanocrystallites is ascertained through XRD analysis. TEM/SEM images reveal the structural alteration of ZnO with variation of Ni doping concentrations. The study of vibrational modes of nanostructures at different stages of structural transformation, as performed through FTIR and Raman spectroscopy, assist in deciphering the crucial role of Ni doping concentration in gradual evolution of nickel doped ZnO structure from nanoparticles to nanorods.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Elilarassi, R., Chandrasekaran, G., Optoelectron. Lett. 6, 0006 (2010).CrossRefGoogle Scholar
Goswami, N., Sharma, D. K., Physica E 42, 1675 (2010).CrossRefGoogle Scholar
Peia, G., Xiaa, C., Caoc, S., Zhanga, J., Wua, F., Xua, J., J. Magn. Magn. Mater. 302, 340 (2006).CrossRefGoogle Scholar
Elilarassi, R., Chandrasekaran, G., Mater. Chem. Phys. 123, 450 (2010).CrossRefGoogle Scholar
Wei, Z., Qiao, H., Yang, H., Zhang, C., Yan, X., J. Alloy Compd. 479, 855 (2009).CrossRefGoogle Scholar
Mahaleh, Y. B. M., Sadrnezhaad, S. K., Hosseini, D., J. Nanomaterials 2008, 470595 (2008).Google Scholar
Nel, J. M., Auret, F. D., Wu, L., Legodi, M. J., Meyer, W. E., Hayes, M., Sensors Actuat. B-Chem. 100, 270 (2004).CrossRefGoogle Scholar
Wang, H., Chen, Y., Wang, H. B., Zhang, C., Yang, F. J., Duan, J. X., Yang, C. P., Xu, Y. M., Zhou, M. J., Li, Q., Appl. Phys. Lett. 90, 052505 (2007).CrossRefGoogle Scholar
Bacsa, R., Kihn, Y., Verelst, M., Dexpert, J., Bacsa, W., Serp, P., Surf. Coat. Tech. 201, 9200 (2007).CrossRefGoogle Scholar
Zhang, B., Zhang, X. T., Gong, H. C., Wu, Z. S., Zhou, S. M., Du, Z. L., Phys. Lett. A 372, 2300 (2008).CrossRefGoogle Scholar
Huang, G. J., Wang, J. B., Zhong, X. L., Zhou, G. C., Yan, H. L., J. Mater. Sci. 42, 6464 (2007).CrossRefGoogle Scholar
Wang, R. P., Xu, G., Jin, P., Phys. Rev. B 69, 113303 (2004).CrossRefGoogle Scholar
Cheng, B., Xiao, Y., Wu, G., Zhang, L., Appl. Phys. Lett. 84, 416 (2004).CrossRefGoogle Scholar
Yang, L. W., Wu, X. L., Huang, G. S., Qiu, T., Yang, Y. M., J. Appl. Phys. 97, 014308 (2005).CrossRefGoogle Scholar
Alim, K. A., Fonoberov, V. A., Balandin, A. A., Appl. Phys. Lett. 86, 053103 (2005).CrossRefGoogle Scholar
Uma, K., Ananthakumar, S., Mangalaraja, R. V., Mahesh, K. P. O., Soga, T., Jimbo, T., J. Sol-Gel Sci. Techn. 49(1), 1 (2009).CrossRefGoogle Scholar
Panda, S. K., Jacob, C., Bull. Mater. Sci. 32(5), 493 (2009).CrossRefGoogle Scholar
Ulmane, N. M., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., Pärs, M., J. Phys.: Conf. Ser. 93, 012039 (2007).Google Scholar
Damen, T. C., Porto, S. P. S., Tell, B., Phys. Rev. 142(2), 570 (1966).CrossRefGoogle Scholar
Arguello, C. A., Rousseau, D. L., Porto, S. P. S., Phys. Rev. 181(3), 1351 (1969).CrossRefGoogle Scholar
Aleksandrov, L., Komatsu, T., Nagamine, K., Oishi, K., IOP Conf. Ser.: Mater. Sci. Engg. 21, 012009 (2011).CrossRefGoogle Scholar
Tait, K. T., Yang, H., Downs, R. T., Li, C., Pinch, W. W., Am. Mineral. 95, 699 (2010).CrossRefGoogle Scholar
Yunhong, Z., Yong’an, H., Fei, D., Lijun, Z., Chinese Sci. Bull. 50(19), 2149 (2005).Google Scholar
Bundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E. M., Lorenz, M., Grundmann, M., Appl. Phys. Lett. 83, 1974 (2003).CrossRefGoogle Scholar
Calleja, J. M., Cardona, M., Phys. Rev. B 16(8), 3753 (1977).CrossRefGoogle Scholar
Ulmane, N. M., Kuzmin, A., Sildos, I., Pärs, M., Cent. Eur. J. Phys. 9(4), 1096 (2011).Google Scholar
Dietz, R. E., Brinkman, W. F., Meixner, A. E., Guggenheim, H. J., Phys. Rev. Lett. 27(12), 814 (1971).CrossRefGoogle Scholar