Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T22:26:19.338Z Has data issue: false hasContentIssue false

The Growth of High Quality GaAs Epilayers on Stripe Patterned InP Substrates With a Transferred GaAs Fused Layer

Published online by Cambridge University Press:  10 February 2011

Sung Min Hwang
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
Young Ju Park
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
Eun Kyu Kim
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
In-Hoon Choi
Affiliation:
Department of materials science, Korea University, I Anam-Dong, Sungbuk-Ku, Seoul 132-701, Korea
Get access

Abstract

Both the wafer fusion and the heteroepitaxy technology were used successfully to obtain high quality GaAs layer on the InP substrate where the lattice mismatch was 3.7 %. The enhancement of the lateral growth rate was a crucial factor for the formation of high quality QWR in the patterned fusion layer. This technique can provide a way of overcoming the limitation of heteroepitaxy caused by misfit problems and its subsequent quality degradation. It is expected that the overgrowth technique on the patterned fusion layer can be applicable to the photonic device fabrication on the other substrate such as Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fang, S.F., Adomi, K., Iyer, S., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990)Google Scholar
2 Lo, Y. H., Bhat, R., Hwang, D.M., Chua, C. and Lin, C.-H., Appl. Phys. Lett. 62, 1038 (1993)Google Scholar
3 Tokuyome, M.K., Nishi, K., and Sugo, M., Electron. Lett. 30, 1008 (1994).Google Scholar
4 Kim, Dong-Keun, Ahn, Ju-Heon, and Lee, Byung-Teak, Appl. Phys. Lett. 66, 2531 (1995).Google Scholar
5 Zhu, Z. -H., , Felix, Ejeckman, E., Quian, Y., Zhang, J., Zhang, Z., Christenson, G.L., and Lo, Y. H., IEEE J. Sel. Top. Quantum Electron. 3, 927 (1997).Google Scholar
6 Tsang, W.T., and Cho, A. Y., Appl. Phys. Lett. 30, 293 (1977)Google Scholar
7 Kapon, E., Tarmargo, M.C. and Hwang, D.M., Hwang, M.A., Appl. Phys. Lett. 50, 347 (1987) 75 Google Scholar
8 Kim, T.G., Park, K. Y, Hwang, S.M., Kim, Y., Kim, E.K., Min, S.K., Leem, S.J., Jeon, J.I., Park, J. H., Chang, William S.C., IEEE J. Quantum Electron. 34, 1461 (1998).Google Scholar
9 Kim, Y., Park, Y. K., Kim, M.S., Kang, J.M., Kim, S.I., Hwang, S.M., and Min, S.K., J. Cryst. Growth 156, 169 (1995).Google Scholar
10 Choi, C.H., Hwang, S.M., Kim, Y., Sahn, N., Kim, E.K., and Min, S-K., Ungyongmulli(Korean Phys. Soc.) 11, 353 (1998).Google Scholar
11 Park, Y.K., Kim, Y., Lee, M.S., Kim, M.S., Park, Y.J., Kim, S.I., and Min, S.K., Ungyongmulli (Korean Phys. Soc.) 8, 115 (1995).Google Scholar
12 Hwang, S.M., Lee, J. Y., Kim, E.K., Kang, D.H., and Choi, I-H., Ungyongmulli (Korean Phys. Soc.) 12, 472 (1999)Google Scholar
13 Walther, M., Kapon, E, Christen, J., Hwang, D.M., and Bhat, R., Appl. Phys. Lett. 60, 521 (1992).Google Scholar
14 Jones, S.H., Seidel, L.K., Lau, K.M., Harold, M., J. Cryst. Growth 108, 73 (1991)Google Scholar
15 Kondo, M., Tanahashi, T., J. Cryst. Growth 145, 390 (1994)Google Scholar
16 Hwang, S.M., Park, Y.J., Park, S.K., Hyun, C.K., Kim, E.K., and Choi, I. H., (unpublished)Google Scholar