Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T06:32:04.362Z Has data issue: false hasContentIssue false

The CVD Diamond Nucleation Mechanism on Si Overlaid with sp2 Carbon

Published online by Cambridge University Press:  25 February 2011

Pehr E. Pehrsson
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375–5000
John Glesener
Affiliation:
ONT Post-Doctoral Fellow, Naval Research Laboratory
Arthur A. Morrish
Affiliation:
Optical Sciences Division, Naval Research Laboratory
Get access

Abstract

Rudder et al. [1] observed heavy (>109 cm-2) diamond nucleation on unscratched Si wafers overlaid with carbon fibers during CVD growth. We demonstrate that the nucleation occurs on the edges of etch pits and carbon-rich particles resulting from reaction between the fibers and the substrate. Both the etch pits and the particles satisfy what we consider to be two necessary conditions for ‘spontaneous’ nucleation; a carbon-saturated surface and high energy sites (unsatisfied valencies) at edges and steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rudder, R., private communication, 5/91Google Scholar
2. Pehrsson, P. E., Celii, F. G., Butler, J. E., in Davis, R. (ed.), Diamond Films and Coatings, 1991, in pressGoogle Scholar
3. Iijima, S., Aikawa, Y., Baba, K., Appl. Phys. Lett., 12(25), 2646 (1990)Google Scholar
4. Yugo, S., Kimura, T., Kanai, H., Science and Technology of the New Diamond, (ed. Saito, S., Fukunaga, O., Yoshikawa, M.), Proc. of 1st Inti. Conf. on New Diamond Science and Tech., (1991)Google Scholar
5. Harker, A. B., DeNatale, J. D., J. Mater. Res., 5(4), 818 (1990)Google Scholar
9. Lurie, P. G., Wilson, J. M., Surface Science, 65, 476 (1977)Google Scholar
7. Debroy, T., Tankala, K., Yarbrough, W. A., Messier, R., J. Appl. Phys., 68.(5), 2424 (1990)Google Scholar
8. Yang, Y., Williams, E. D., J. Vac. Sci. Tech. A, 8(3), 2481 (1990)CrossRefGoogle Scholar
9. Pehrsson, P. E., Morrish, A. A., Glesener, J., presented at the Int. Conf. on Met. Coatings and Thin Films, San Diego, Ca., 1991 (manuscript in preparation)Google Scholar
10. Joffreau, P. O., Haubner, R., Lux, B., J. Ref. Hard Metals, 186 (1988)Google Scholar
11. Kern, R., LeLay, G., Metois, J. J., Current Topics in Materials Science, 3, 135 (1979)Google Scholar
12. Matsumoto, S., Matsui, Y., J. Mater. Sci., 18, 1785 (1983)CrossRefGoogle Scholar
13. Angus, J. C., Buck, F. A., Sunkara, M., MRS Bull., 38 (Oct., 1989)CrossRefGoogle Scholar
14. Angus, J. C., personal communication, (1991)Google Scholar
15. Davis, R. F., Glass, J. T., Lucovsky, G., Bachmann, K. J., Trew, R. J., Nemanich, R. J., Annual Report: School of Engineering, N.C. State Univ., Raleigh, N.C., (1988)Google Scholar
16. Angus, J. C., Proceedings. 2nd Intl. Svm. on Diamond Materials, The Electrochem. Soc., Washington D. C., May, 1991, in pressGoogle Scholar
17. Belton, D. N., Schmieg, S. J., J. Appl. Phys., 66 (9), 4223 (1989)Google Scholar
18. Belton, D. N., Schmeig, S. J., J. Vac. Sci. Tech. A, 8.(3), 2353 (1990)CrossRefGoogle Scholar
19. Belton, D. N., Schmeig, S. J., J. Appl. Phys., 69(5), 3032 (1991)Google Scholar