Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-17T22:18:56.399Z Has data issue: false hasContentIssue false

Ordering Effect of Lithium Ions in a Self-Assembled Hybrid System

Published online by Cambridge University Press:  15 March 2011

P.J. Retuert
Affiliation:
Department of Chemistry, Faculty of Physical and Mathematical Science, University of Chile, Casilla 2777. Santiago, Chile
S. Fuentes
Affiliation:
Faculty of Science, University of Chile, Casilla 653. Santiago, Chile
G. González
Affiliation:
Faculty of Science, University of Chile, Casilla 653. Santiago, Chile
M. Yazdani-Pedram
Affiliation:
Department of Chemistry, Faculty of Physical and Mathematical Science, University of Chile, Casilla 2777. Santiago, Chile
Get access

Abstract

By blending 3-aminopropyl-siloxane oligomers (pAPS) with chitosan (CHI) self-assembled hybrid films have been obtained. The influence of the incorporation of LiClO4 on the morphology of these transparent and flexible hybrid films has been studied. It was found that when this salt is added in amounts slightly over the limit of the maximal homogeneous incorporation a process of anisotropical crystallization begins. For a hybrid with composition CHI/pAPS/LiClO4 = 0.6/1/0.8M, Video-Enhanced Differential Interference Contrast microscopy (VEC-DIC) of the first three layers of the films showed that each layer have oriented patterns with angles of exactly 60 degrees between the planes. These results in combination with FTIR analysis of the products indicate that lithium ions behave as strong structure directing agent. This system can be considered as a biomimetic model for biomineralization processes. An interaction scheme comprising the components of this hybrid system is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robert, G. A.. Chitin Chemistry. Macmillan Press, London, 1992.Google Scholar
2. Samuels, R. J.. J. Polym.Sci., Polym. Phys. 19, 1081 (1981).Google Scholar
3. Urbanczyk, G. W., Lipp-Symonowicz, B.. J. Appl. Polym. Sci. 51, 2191 (1994).Google Scholar
4. Salmon, S., Hudson, S.. Rev. Macromol. Chem. Phys. C37(2), 199 (1997).Google Scholar
5. Andrady, A. and Xum, P.. Journal of Polymer Science. Part B: Polymer Physics. 35, 517 (1997).Google Scholar
6. Rathke, T. D., Hudson, S. M.. Rev. Macromol. Chem. Phys. C34, 375 (1994).Google Scholar
7. Jiang, H., Su, W., Caracci, S.. J. Appl. Polym. Sci. 61, 1163 (1996).Google Scholar
8. Ozin, G. A.. Adv. Mater. 4, 612 (1992).Google Scholar
9. Makishima, A., Tani, T., J. Am. Ceram. Soc., 69, 72 (1986).Google Scholar
10. Levy, D., Esquivias, L., Adv. Mater. 7, 120 (1995).Google Scholar
11. Mark, J., Calvert, P.. Mat. Sci. and Eng. C1, 159 (1994).Google Scholar
12. Calvert, P., Rieke, P.. Chem. Mater. 8, 1715 (1996).Google Scholar
13. Bandyopadhyay, S., De, P. P., Tripathy, P. K.. J. Appl.Polym.Sci. 61, 1813 (1996).Google Scholar
14. Watzke, H. J., Dieschbourg, C.. Advances in Colloid and Interface Sci. 50, 1 (1994).Google Scholar
15. Tian, D., Blacher, S., Pirard, J.. Langmuir. 14, 1905 (1998).Google Scholar
16. Aubry, T., Largenton, B. and Moan, M.. Langmuir. 15, 2380 (1999).Google Scholar
17. Watzke, H. J., and Dieschbourg, C.. Advances in Colloid and Interface Sci. 1, 50 (1994).Google Scholar
18. Paul, S. M. De, Zwanziger, J., Ulrich, R.. J. Am. Chem. Soc. 121, 5727 (1999).Google Scholar
19. Schrotter, J.C., Smaihi, M., Guizard, C.. J. Appl. Polym. Sci. 61, 2137 (1996).Google Scholar
20. Fuentes, S., Retuert, P. J., González, G., Ruiz-Hitzky, E., International J. Polymeric Mater. 35, 61 (1997).Google Scholar
21. Fuentes, S., Retuert, P., Ubilla, A., Fernández, J. and González, G.. Biomacromolecules. 1, 239 (2000).Google Scholar