Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:09:02.577Z Has data issue: false hasContentIssue false

Changes in carbon storage with land management promoted by payment for ecosystem services

Published online by Cambridge University Press:  14 July 2016

LEAH L. BREMER*
Affiliation:
Department of Geography, San Diego State University, San Diego, CA 92182–4493, USA Department of Geography, 1832 Ellison Hall, University of California, Santa Barbara, CA 93106–4060
KATHLEEN A. FARLEY
Affiliation:
Department of Geography, San Diego State University, San Diego, CA 92182–4493, USA
OLIVER A. CHADWICK
Affiliation:
Department of Geography, 1832 Ellison Hall, University of California, Santa Barbara, CA 93106–4060
CAROL P. HARDEN
Affiliation:
Department of Geography, University of Tennessee, Knoxville, TN 37996-0925, USA
*
*Correspondence: Leah L. Bremer, present addresses: University of Hawaiʻi, Mānoa, Department of Botany, 3190 Maile Way, Honolulu, HI 96822, USA and The Natural Capital Project, Stanford Woods Institute for the Environment, 371 Serra Mall, Stanford, CA 94305, USA, e-mail: lbremer@stanford.edu

Summary

Andean grasslands (páramos) are highly valued for their role in regional water supply as well as for their biodiversity and large soil carbon stocks. Several Payment for Ecosystem Services (PES) programmes promote either afforestation or alteration of traditional burning regimes under the assumption that these land management strategies will maximize páramo ecosystem services, including carbon storage. However, knowledge of the effects of incentivized land uses is limited. In an evaluation of how afforestation and elimination of burning affect carbon storage at a site in southern Ecuador, we found the highest above-ground biomass carbon levels at afforested sites (99.3–122.0 t C ha−1), while grassland sites reached 23.9 t C ha−1 after 45 years of burn exclusion. Soil carbon storage from 0–20 cm was high across all sites (172.8–201.9 t C ha−1), but was significantly lower with afforestation than with burn exclusion. These findings suggest that, although afforestation is generally favoured when carbon is the primary ecosystem service of interest, grasslands with infrequent burning have important potential as a land management strategy when both above-ground biomass and soil carbon are considered. These results are relevant to the development and adaptation of PES programmes focused on carbon as well as those focused on multiple ecosystem services.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekessy, S.A. & Wintle, B.A. (2008) Using carbon investment to grow the biodiversity bank. Conservation Biology 22: 510513.CrossRefGoogle Scholar
Berthrong, S.T., Jobbagy, E.G. & Jackson, R.B. (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications 19: 22282241.CrossRefGoogle ScholarPubMed
Berthrong, S.T., Pineiro, G., Jobbagy, E.G. & Jackson, R.B. (2012) Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecological Applications 22: 7686.CrossRefGoogle Scholar
Bowman, D., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R. & Pyne, S.J. (2009) Fire in the earth system. Science 324: 481484.CrossRefGoogle ScholarPubMed
Bremer, L. & Farley, K. (2010). Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation 19: 38933915.CrossRefGoogle Scholar
Bremer, L.L., Farley, K.A. & Lopez-Carr, D. (2014 a). What factors influence participation in Payment for Ecosystem Services programs? An evaluation of Ecuador's SocioPáramo program. Land Use Policy 36: 122133.CrossRefGoogle Scholar
Bremer, L.L., Farley, K.A., Lopez-Carr, D. & Romero, J. (2014 b). Conservation and livelihood outcomes of Payment For Ecosystem Services in the Ecuadorian Andes: what is the potential for ‘win–win’? Ecosystem Services 8: 148165.CrossRefGoogle Scholar
Bremer, L.L., Auerbach, D.A., Goldstein, J.H., Vogl, A.L., Shemie, D., Kroeger, T., Nelson, J.L., Benítez, S.P., Calvache, A., Guimarães, J., Herron, C., Higgins, J., Klemz, C., León, J., Sebastián, J., Moreno, P.H., Nuñez, F., Veiga, F. & Tiepolo, G. (2016) One size does not fit all: natural infrastructure investments within the Latin American Water Funds Partnership. Ecosystem Services 17: 217236.CrossRefGoogle Scholar
Brockington, D. (2011) Ecosystem services and fictitious commodities. Environmental Conservation 38: 367369.Google Scholar
Buytaert, W., Wyseure, G., De Bievre, B. & Deckers, J. (2005) The effect of land-use changes on the hydrological behaviour of Histic Andosols in south Ecuador. Hydrological Processes 19: 39853997.CrossRefGoogle Scholar
Buytaert, W., Celleri, R., De Bievre, B., Cisneros, F., Wyseure, G., Deckers, J. & Hofstede, R. (2006 a). Human impact on the hydrology of the Andean paramos. Earth Science Reviews 79: 5372.CrossRefGoogle Scholar
Buytaert, W., Deckers, J. & Wyseure, G. (2006 b). Description and classification of nonallophanic Andosols in south Ecuadorian alpine grasslands (paramo). Geomorphology 73: 207221.CrossRefGoogle Scholar
Buytaert, W., Deckers, J. & Wyseure, G. (2007 a). Regional variability of volcanic ash soils in south Ecuador: the relation with parent material, climate and land use. Catena 70: 143154.CrossRefGoogle Scholar
Buytaert, W., Iniguez, V. & De Bievre, B. (2007 b). The effects of afforestation and cultivation on water yield in the Andean paramo. Forest Ecology and Management 251: 2230.Google Scholar
Chacon, G., Gagnon, D. & Pare, D. (2009) Comparison of soil properties of native forests, Pinus patula plantations and adjacent pastures in the Andean highlands of southern Ecuador: land use history or recent vegetation effects? Soil Use and Management 25: 427433.CrossRefGoogle Scholar
Daily, G.C., Polasky, S., Goldstein, J., Kareiva, P.M., Mooney, H.A., Pejchar, L., Ricketts, T.H., Salzman, J. & Shallenberger, R. (2009) Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment 7: 2128.Google Scholar
de Koning, F., Aguinaga, M., Bravo, M., Chiu, M., Lascano, M., Lozada, T. & Suarez, L. (2011) Bridging the gap between forest conservation and poverty alleviation: the Ecuadorian Socio Bosque program. Environmental Science & Policy 14: 531542.Google Scholar
Engel, S., Pagiola, S. & Wunder, S. (2008) Designing payments for environmental services in theory and practice: an overview of the issues. Ecological Economics 65: 663674.CrossRefGoogle Scholar
Farley, K.A., Kelly, E.F. & Hofstede, R.G.M. (2004) Soil organic carbon and water retention following conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 7: 729739.CrossRefGoogle Scholar
Farley, K.A., Bremer, L.L., Harden, C.P. & Hartsig, J. (2013) Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: implications for payment for ecosystem services. Conservation Letters 6: 2125.CrossRefGoogle Scholar
Farley, K.A., Anderson, W.G., Bremer, L.L. & Harden, C.P. (2011) Compensation for ecosystem services: an evaluation of efforts to achieve conservation and development in Ecuadorian paramo grasslands. Environmental Conservation 48: 393405.CrossRefGoogle Scholar
Fehse, J., Hofstede, R., Aguirre, N., Paladines, C., Kooijman, A. & Sevink, J. (2002) High altitude tropical secondary forests: a competitive carbon sink? Forest Ecology and Management 163: 925.CrossRefGoogle Scholar
Gibbon, A., Silman, M.R., Malhi, Y., Fisher, J.B., Meir, P., Zimmermann, M., Dargie, G.C., Farfan, W.R. & Garcia, K.C. (2010) Ecosystem carbon storage across the grassland-forest transition in the High Andes of Manu National Park, Peru. Ecosystems 13: 10971111.CrossRefGoogle Scholar
Goldstein, J.H., Caldarone, G., Duarte, T.K., Ennaanay, D., Hannahs, N., Mendoza, G., Polasky, S., Wolny, S. & Daily, G.C. (2012) Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences 109: 75657570.Google Scholar
Gonzalez-Perez, J.A., Gonzalez-Vila, F.J., Almendros, G. & Knicker, H. (2004) The effect of fire on soil organic matter – a review. Environment International 30: 855870.Google Scholar
Gower, S.T., McMurtrie, R.E. & Murty, D. (1996) Aboveground net primary production decline with stand age: potential causes. Trends in Ecology & Evolution 11: 378382.CrossRefGoogle ScholarPubMed
Guerry, A.D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G.C., Griffin, R., Ruckelshaus, M., Bateman, I.J., Duraiappah, A., Elmqvist, T., Feldman, M.W., Folke, C., Hoekstra, J., Kareiva, P.M., Keeler, B.L., Li, S., McKenzie, E., Ouyang, Z., Reyers, B., Ricketts, T.H., Rockström, J., Tallis, H. & Vira, B. (2015) Natural capital and ecosystem services informing decisions: from promise to practice. Proceedings of the National Academy of Sciences 112: 201503751.Google Scholar
Guo, L.B. & Gifford, R.M. (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology 8: 345360.CrossRefGoogle Scholar
Harden, C.P., Hartsig, J., Farley, K.A., Lee, J. & Bremer, L.L. (2013) Effects of land-use change on water in Andean Páramo Grassland soils. Annals of the Association of American Geographers 103: 375384.CrossRefGoogle Scholar
Hofstede, R.G.M. (1995) The effects of grazing and burning on soil and plant nutrient concentrations in Colombian Paramo Grasslands. Plant and Soil 173: 111132.CrossRefGoogle Scholar
Hofstede, R.G.M. & Rossenaar, A. (1995) Biomass of grazed, burned and undisturbed Paramo Grasslands, Colombia 2. Root mass and aboveground/belowground ratio. Arctic and Alpine Research 27: 1318.CrossRefGoogle Scholar
Hofstede, R.G.M., Groenendijk, J.P., Coppus, R., Fehse, J.C. & Sevink, J. (2002) Impact of pine plantations on soils and vegetation in the Ecuadorian High Andes. Mountain Research and Development 22: 159167.CrossRefGoogle Scholar
Holmes, K.W., Chadwick, O.A., Kyriakidis, P.C., de Filho, E.P.S., Soares, J.V. & Roberts, D.A. (2006) Large-area spatially explicit estimates of tropical soil carbon stocks and response to land-cover change. Global Biogeochemical Cycles 20: GB3004.Google Scholar
Jackson, R.B., Banner, J.L., Jobbagy, E.G., Pockman, W.T. & Wall, D.H. (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418: 623626.Google Scholar
Keating, P.L. (2007) Fire ecology and conservation in the high tropical Andes: observations from northern Ecuador. Journal of Latin American Geography 6: 4362.Google Scholar
Knicker, H. (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85: 91118.CrossRefGoogle Scholar
Lal, R. (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123: 122.CrossRefGoogle Scholar
Lal, R. (2013) Soil carbon management and climate change. Carbon Management 4: 439462.CrossRefGoogle Scholar
Lindenmayer, D.B., Hulvey, K.B., Hobbs, R.J., Colyvan, M., Felton, A., Possingham, H., Steffen, W., Wilson, K., Youngentob, K. & Gibbons, P. (2012) Avoiding bio-perversity from carbon sequestration solutions. Conservation Letters 5: 2836.CrossRefGoogle Scholar
Muradian, R., Corbera, E., Pascual, U., Kosoy, N. & May, P.H. (2010) Reconciling theory and practice: an alternative conceptual framework for understanding payments for environmental services. Ecological Economics 69: 12021208.CrossRefGoogle Scholar
Naeem, S., Ingram, J.C., Varga, A., Agardy, T., Barten, P., Bennett, G., Bloomgarden, E., Bremer, L.L., Burkill, P., Cattau, M., Ching, C., Colby, M., Cook, D.C., Costanza, R., DeClerck, F., Freund, C., Gartner, T., Goldman-Benner, R., Gunderson, J., Jarrett, D., Kinzig, A.P., Kiss, A., Koontz, A., Kumar, P., Lasky, J.R., Masozera, M., Meyers, D., Milano, F., Naughton-Treves, L., Nichols, E., Olander, L., Olmsted, P., Perge, E., Perrings, C., Polasky, S., Potent, J., Prager, C., Quétier, F., Redford, K., Saterson, K., Thoumi, G., Vargas, M.T., Vickerman, S., Weisser, W., Wilkie, D. & Wunder, S. (2015) Get the science right when paying for nature's services. Science 347: 12061207.CrossRefGoogle ScholarPubMed
Neff, J.C., Barger, N.N., Baisden, W.T., Fernandez, D.P. & Asner, G.P. (2009) Soil carbon storage responses to expanding pinyon-juniper populations in southern Utah. Ecological Applications 19: 14051416.CrossRefGoogle ScholarPubMed
Paul, K.I., Polglase, P.J., Nyakuengama, J.G. & Khanna, P.K. (2002) Change in soil carbon following afforestation. Forest Ecology and Management 168: 241257.CrossRefGoogle Scholar
Podwojewski, P., Poulenard, J., Zambrana, T. & Hofstede, R. (2002) Overgrazing effects on vegetation cover and properties of volcanic ash soil in the paramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use And Management 18: 4555.Google Scholar
Poulenard, J., Podwojewski, P. & Herbillon, A.J. (2003) Characteristics of non-allophanic andisols with hydric properties from the Ecuadorian paramos. Geoderma 117: 267281.CrossRefGoogle Scholar
Ravindranath, N.H. & Ostwald, M. (2008) Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. pp. 308. Dordrecht, the Netherlands: Springer.CrossRefGoogle Scholar
Ruffo, S. & Kareiva, P.M. (2009) Using science to assign value to nature. Frontiers in Ecology and the Environment 7: 3.CrossRefGoogle Scholar
Ryan, M.G., Binkley, D., Fownes, J.H., Giardina, C.P. & Senock, R.S. (2004) An experimental test of the causes of forest growth decline with stand age. Ecological Monographs 74: 393414.CrossRefGoogle Scholar
Shoji, S., Nanzyo, M. & Dahlgren, R. (1993) Volcanic ash soils: genesis, properties, and utilization. In: Developments in Soil Science 21. Amsterdam, the Netherlands: Elsevier.Google Scholar
Smith, P., House, J.I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., West, P.C., Clark, J.M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M.F., Elliott, J.A., McDowell, R., Griffiths, R.I., Asakawa, S., Bondeau, A., Jain, A.K., Meersmans, J. & Pugh, T.A.M. (2016) Global change pressures on soils from land use and management. Global Change Biology 22: 10081028.CrossRefGoogle ScholarPubMed
Suarez, E. & Medina, G. (2001) Vegetation structure and soil properties in Ecuadorian paramo grasslands with different histories of burning and grazing. Arctic Antarctic and Alpine Research 33: 158164.Google Scholar
Tonneijck, F.H., Jansen, B., Nierop, K.G.J., Verstraten, J.M., Sevink, J. & De Lange, L. (2010) Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. European Journal of Soil Science 61: 392405.CrossRefGoogle Scholar
Trabucco, A., Zomer, R.J., Bossio, D.A., van Straaten, O. & Verchot, L.V. (2008) Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agriculture Ecosystems & Environment 126: 8197.Google Scholar
Van Wesenbeeck, B.K., Van Mourik, T., Duivenvoorden, J.F. & Cleef, A.M. (2003) Strong effects of a plantation with Pinus patula on Andean subparamo vegetation: a case study from Colombia. Biological Conservation 114: 207218.Google Scholar
White, S. (2013) Grass páramo as hunter-gatherer landscape. The Holocene 23: 898915.CrossRefGoogle Scholar
White, S. & Maldonado, F. (1991) The use and conservation of natural-resources in the Andes of southern Ecuador. Mountain Research and Development 11: 3755.CrossRefGoogle Scholar
Wunder, S. (2013) When payments for environmental services will work for conservation. Conservation Letters 6: 230237.Google Scholar
Wunder, S. & Alban, M. (2008) Decentralized payments for environmental services: the cases of Pimampiro and PROFAFOR in Ecuador. Ecological Economics 65: 685698.CrossRefGoogle Scholar
Zehetner, F., Miller, W.P. & West, L.T. (2003) Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Science Society of America Journal 67: 17971809.Google Scholar
Zimmermann, M., Meir, P., Silman, M.R., Fedders, A., Gibbon, A., Malhi, Y., Urrego, D.H., Bush, M.B., Feeley, K.J., Garcia, K.C., Dargie, G.C., Farfan, W.R., Goetz, B.P., Johnson, W.T., Kline, K.M., Modi, A.T., Rurau, N.M.Q., Staudt, B.T. & Zamora, F. (2010) No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13: 6274.CrossRefGoogle Scholar
Supplementary material: File

Bremer supplementary material S1

Supplementary Table

Download Bremer supplementary material S1(File)
File 34.8 KB
Supplementary material: File

Bremer supplementary material S2

Supplementary Figure

Download Bremer supplementary material S2(File)
File 2.5 MB
Supplementary material: File

Bremer supplementary material S3

Supplementary Table

Download Bremer supplementary material S3(File)
File 77.7 KB