Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T18:43:10.668Z Has data issue: false hasContentIssue false

Large-Scale Deposition of Transparent Conducting Oxides by Hollow Cathode Sputtering

Published online by Cambridge University Press:  20 June 2011

Alan E. Delahoy
Affiliation:
New Millennium Solar Equipment Corp., 8 Marlen Dr., Robbinsville, NJ 08691, U.S.A.
Kai Jansen
Affiliation:
New Millennium Solar Equipment Corp., 8 Marlen Dr., Robbinsville, NJ 08691, U.S.A.
Chris Robinson
Affiliation:
New Millennium Solar Equipment Corp., 8 Marlen Dr., Robbinsville, NJ 08691, U.S.A.
Anthony Varvar
Affiliation:
New Millennium Solar Equipment Corp., 8 Marlen Dr., Robbinsville, NJ 08691, U.S.A.
Paul Fabiano
Affiliation:
New Millennium Solar Equipment Corp., 8 Marlen Dr., Robbinsville, NJ 08691, U.S.A.
Rajesh Kappera
Affiliation:
Rutgers University, Dept. of Electrical Engineering Piscataway, NJ 08854, U.S.A.
Sheyu Guo
Affiliation:
Yiri Solartech (Suzhou) Co., Ltd., Wujiang Hi-Tech Park, 2358 Chang An Road, Wujiang City, Jiangsu Province, P.R. China 215200
Hongmei Li
Affiliation:
Yiri Solartech (Suzhou) Co., Ltd., Wujiang Hi-Tech Park, 2358 Chang An Road, Wujiang City, Jiangsu Province, P.R. China 215200
Shaohua Yang
Affiliation:
Yiri Solartech (Suzhou) Co., Ltd., Wujiang Hi-Tech Park, 2358 Chang An Road, Wujiang City, Jiangsu Province, P.R. China 215200
Get access

Abstract

This paper reviews the status of hollow cathode sputtering as an evolving technology for production of thin-film transparent conducting oxides for PV applications. A large market segment for PV TCOs is represented by thin-film a-Si:H and tandem a-Si:H/nc-Si:H modules. For superstrate devices, textured SnO2:F produced on-line by APCVD is currently the market leader, although alternative off-line methods and materials are now emerging. In particular, zinc oxide can be produced by LPCVD, APCVD, magnetron sputtering, and hollow cathode sputtering (HCS). HCS is a stable process featuring low-cost metal targets and a soft deposition process. We discuss the deposition principles and the film results obtained using linear hollow cathodes 0.5 m and 1.0 m in length. We report the direct deposition of highly textured doped ZnO having an electron mobility in excess of 50 cm2/Vs. The production cost of textured ZnO is estimated for several competing techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Delahoy, A.E. and Guo, S., Transparent Conductive Oxides for Photovoltaics, in Handbook of Photovoltaic Science and Engineering, 2nd edition, edited by Luque, A. and Hegedus, S. (Wiley, Chichester, 2011), p. 716.Google Scholar
2. Delahoy, A.E., Guo, S.Y., Paduraru, C., and Belkind, A., J. Vac. Sci. Technol. A 22, 1697 (2004).Google Scholar
3. Delahoy, A.E. and Guo, S.Y., J. Vac. Sci. Technol. A 23, 1215 (2005).Google Scholar
4. Guo, S.Y., Shafarman, W.N., and Delahoy, A.E., J. Vac. Sci. Technol. A 24, 1524 (2006).Google Scholar
5. Guo, S.Y., Sahoo, L., Sosale, G., and Delahoy, A.E., in Photovoltaic Cell and Module Technologies, edited by von Roedern, B., Delahoy, A.E., Proc. SPIE 6651, 66510B, (2007).Google Scholar
6. Ishii, K., J. Vac. Sci. Technol. A 7, 256 (1989).Google Scholar
7. Jung, T. and Westphal, A., Surf. Coat. Technol. 59, 171 (1993).Google Scholar
8. Delahoy, A.E., Guo, S., Cambridge, J., Lyndall, R., Anna Selvan, J.A., Patel, A., Foustotchenko, A., and Sang, B., 4th World Conf. Photovoltaic Energy Conv., 327 (2006).Google Scholar
9. Kubo, Y., Iwabuchi, Y., Yoshikawa, M., Sato, Y., and Shigesato, Y., J. Vac. Sci. Technol. A 26, 893 (2008).Google Scholar
10. Guo, S.Y., Patel, A.M., Cambridge, J.A., Stavrides, A.P., Le, L.T., Efstathiadis, H., Haldar, P., and Delahoy, A.E., 23rd European Photovoltaic Solar Energy Conference, 2482 (2008).Google Scholar
11. Delahoy, A.E., Guo, S.Y. et al. ., 19th European PVSEC, 1686 (2004).Google Scholar
12. Payne, D.N.R., Boden, S.A., Clark, O.D., Delahoy, A.E., and Bagnall, D.M., 35th IEEE PVSC, (2010).Google Scholar
13. Delahoy, A.E., Liu, T., Saraf, G., Guo, S., Cambridge, J.A., Kappera, R., Stavrides, A. & Rodriguez, L., Delli Veneri, P., Mercaldo, L. V. and Usatii, I., 24th European PVSEC, 2860 (2009).Google Scholar
14. Agashe, C., Kluth, O., Hüpkes, J., Zastrow, U., Rech, B., and Wuttig, M., J. Appl. Phys. 95, 1911 (2004).Google Scholar
15. Berginski, M., Hüpkes, J., Schulte, M., Schöpe, G., Stiebig, H., and Rech, B., J. Appl. Phys. 101, 074903 (2007).Google Scholar
16. Steinhauser, J., Faÿ, S., Oliveira, N., Vallat-Sauvain, E., Zimin, D., Kroll, U., and Ballif, C., phys. stat. sol. (a) 205, 1983 (2008).Google Scholar
17. Ding, L., Nicolay, S., Bugnon, G., Benhaira, M., and Ballif, C., 25th European PVSEC, 2943 (2010).Google Scholar
18. Seeger, K., Semiconductor Physics, Springer-Verlag Berlin, 3rd edn (1985).Google Scholar
19. Nag, B.R., Theory of Electrical Transport in Semiconductors, Pergamon Press, Oxford (1972).Google Scholar
20. Young, D.L., Coutts, T.J., Kaydanov, V.I., Gilmore, A.S., and Mulligan, W.P., J. Vac. Sci. Technol. A 18, 2978 (2000).Google Scholar
21. Ellmer, K. and Mientus, R., Thin Solid Films 516, 5829 (2008).Google Scholar
22. Makino, T., Segawa, Y., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 87, 022101 (2005).Google Scholar
23. Button, K.J., Fonstad, C.G., and Dreybrodt, W., Phys. Rev. B4, 4539 (1971).Google Scholar
24. Daube, C. et al. , 25th European PVSEC, 2771 (2010).Google Scholar
25. Delahoy, A.E. et al. ., Photovoltaic Cell and Module Technologies II, edited by von Roedern, B., Delahoy, A.E., Proc. SPIE 7045, 704506 (2008).Google Scholar