Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T07:58:35.882Z Has data issue: false hasContentIssue false

The Effect of Multiple Interfaces on the Electrical Properties of MgO/Al2O3 Multilayer Gate Stacks on Si Grown by MBE

Published online by Cambridge University Press:  19 August 2014

Chen-Yi Su
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Mariela Menghini
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Jin Won Seo
Affiliation:
Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
Jean-Pierre Locquet
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Get access

Abstract

High-κ and metal gate structures have been used to improve the performance of CMOS devices. By changing the materials and structures of the gate dielectric stacks, the flatband voltage (VFB) and the leakage can be changed. We used bilayers and multilayer structures composed of MgO and Al2O3 to verify their influence on the overall electrical properties. Films with an MgO bottom layer generally are found with less flatband voltage shift and lower leakage than with an Al2O3 bottom layer. Also, the frequency dispersion and the interface state density (Dit) are higher for those with MgO bottom layers. MgO films thicker than 0.5 nm effectively shields the positive charges present in the Al2O3.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iwamoto, K., Ogawa, A., Kamimuta, Y., Watanabe, Y., Mizubayashi, W., Migita, S., Morita, Y., Takahashi, M., Ito, H., Ota, H., Nabatame, T., and Toriumi, A., VLSI Symp. Tech. Dig. 70 (2007).Google Scholar
Jagannathan, H., Narayanan, V., and Brown, S., ECS Trans. 16, 19 (2008).CrossRefGoogle Scholar
Su, C.Y., Menghini, M., Smets, T., Dillemans, L., Lieten, R. and Locquet, J.P., IOP Conf. Ser.: Mater. Sci. Eng. 41 (2012) 012010.CrossRefGoogle Scholar
Hoex, B., Schmidt, J., Bock, R., Altermatt, P. P., van de Sanden, M. C. M., and Kessels, W. M. M., Appl. Phys. Lett., 91, 112107 (2007).CrossRefGoogle Scholar
Kita, K., Toriumi, A., Appl. Phys. Lett., 94, 132902 (2009).CrossRefGoogle Scholar
Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley (1982)Google Scholar
Hu, J. and Wong, H.-S. P., J. Appl. Phys. 111, 044105 (2012).CrossRefGoogle Scholar
Su, C.-Y., Frederickx, M., Menghini, M., Dillemans, L., Lieten, R., Smets, T., Seo, J. W. and Locquet, J.-P., Thin Solid Films 520 4508–11 (2012)CrossRefGoogle Scholar
Robertson, J., Vac, J.. Sci. Technol. A, 31, 050821 (2013).Google Scholar
Di, M., Bersch, E., Clark, R. D., Consiglio, S., Leusink, G. J., and Diebold, A. C., J. Appl. Phys. 108, 114107 (2010).CrossRefGoogle Scholar