Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T04:14:46.917Z Has data issue: false hasContentIssue false

Effect of RF Sputtering on T/H Susceptibility of Cr/Polyimide Adhesion

Published online by Cambridge University Press:  25 February 2011

D. G. Kim
Affiliation:
IBM, T. J. Watson Research Center, Yorktown Heights, NY 10598
T. S. Oh
Affiliation:
KIST, Cheong-Ryang P. O. Box 131, Seoul, Korea
S. Molis
Affiliation:
IBM, T. J. Watson Research Center, Yorktown Heights, NY 10598
S. Kowalczyk
Affiliation:
IBM, T. J. Watson Research Center, Yorktown Heights, NY 10598
J. Kim
Affiliation:
IBM, T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Effects of RF sputtering on the hydrothermal stability of Cr/polyimide interfaceshave been studied using FTIR, XPS, and peel test. It has been found that RF sputter-treatment of polyimnide surface prior to metal deposition leads to an enhancement of adhesion through chemical bonding of the metal with polyimide resulting in cohesive polyimide failure. The RF sputter treatment of polyimide, however, simultaneously modifies the polyimide underneath its surface. The adhesion strength of the Cr/polyimide interfaceis degraded significantly upon exposure to a temperature/humidity (T/H) environment. It is suggested this degradation results from the hydrolysis of polyimide. The hydrolysis is facilitated by the presence of modified unstable polyimide near the interface. This degradation of adhesion strength can be minimized by converting the unstablemodified polyimide to a more stable state by re-curing the Cr/polyimide interfacebefore exposure to T/H environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lebow, S., in: Proc. 30th Electronic Components Conf., 307–309 (1980).Google Scholar
2. Wilson, A. M., Thin Solid Films, 83, 145163 (1981).Google Scholar
3. Rothman, L. B., J. Electrochem. Soc., 127, 22162220 (1980).Google Scholar
4. Kim, Y. H., Kim, J., Walker, G. F., Feger, C. and Kowalczyk, S. P., J. Adh. Sci. Technol., 2,95105, (1988).Google Scholar
5. Oh, T. S., Kim, D. G., Molis, S., Kowalczyk, S. P. and Kim, J., to be published in J. Mat. Res. Letter Google Scholar
6. Kim, J., unpublished data, presented in MRS symposium, Boston, MA., Nov.,(1989).Google Scholar
7. Oh, T.S., Kowalczyk, S.P., Hunt, D.J. and Kim, J., J. Adh. Sci. Technol., 4, 119129 (1990).Google Scholar
8. Bartha, J. W., Hahn, P. O., Legoues, F., and Ho, P. S., J. Vac. Sci. Technol., A3, 13901393 (1985).Google Scholar
9. Matienzo, L. J., Emmi, F., Hart, D. C. Van and Gall, T. P., J. Vac. Sci. Technol., A7(3), 1784 (1989).Google Scholar
10. Pryde, C. A., Polm. Mater. Sci. Eng., 219–214 (1988).Google Scholar
11. Nagarkar, P.V., Sichell, E.K. and Doll, G.L., Mat. Res. Soc. Symp. Proc., 154, 363368,(1989).Google Scholar
12. Deiasi, R., J. Appl. Polym. Sci., 15, 29652974 (1971).Google Scholar