Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:36:42.021Z Has data issue: false hasContentIssue false

Interface Engineering During Epitaxial Growth of High-K Lanthanide Oxides on Silicon

Published online by Cambridge University Press:  01 February 2011

H. Joerg Osten
Affiliation:
osten@ihw.uni-hannover.de, University of Hannover, Institute of Electronic Materials and Devices, Appelstr. 11A, Hannover, N/A, D-30167, Germany, +49 511 762 4211, +49 511 762 4229
Malte Czernohorsky
Affiliation:
czernoh@mbe.uni-hannover.de, University of Hannover, Institute of Electronic Materials and Devices, Appelstr. 11A, Hannover, N/A, D-30167, Germany
Eberhard Bugiel
Affiliation:
bugiel@mbe.uni-hannover.de, University of Hannover, Institute of Electronic Materials and Devices, Appelstr. 11A, Hannover, N/A, D-30167, Germany
Dirk Kuehne
Affiliation:
kuehne@lfi.uni-hannover.de, University of Hannover, Information Technology Laboratory, Schneiderberg 32, Hannover, N/A, D-30167, Germany
Andreas Fissel
Affiliation:
fissel@lfi.uni-hannover.de, University of Hannover, Information Technology Laboratory, Schneiderberg 32, Hannover, N/A, D-30167, Germany
Get access

Abstract

We investigated the influence of additional oxygen supply and temperature during the growth of thin Gd2O3 layers on Si(001) with molecular beam epitaxy. Additional oxygen supply during growth improves the dielectric properties significantly; however too high oxygen partial pressures lead to an increase in the lower permittivity interfacial layer thickness. The growth temperature mainly influences the dielectric gate stack properties due to changes of the Gd2O3/Si interface structure. Optimized conditions (600 °C, pO2 = 5·10-7 mbar) were found to achieve equivalent oxide thickness values below 1 nm accompanied by leakage current densities below 1 mA/cm2 at 1 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Green, M.L., Gusev, E.P., Degraeve, R., and Garfunkel, E.L., J. Appl. Phys. 90, 2057 (2001).Google Scholar
2 Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. of Appl. Phys. 89, 5243 (2001).Google Scholar
3 Hubbard, K.J. and Schlom, D.G., Journal of Material Research 11, 2757 (1996).Google Scholar
4 Osten, H.J., Bugiel, E., Kirfel, O., Czernohorsky, M., and Fissel, A., J. Cryst. Growth 278, 18 (2005).Google Scholar
5 Fissel, A., Osten, H.J., and Bugiel, E., J. Vac. Sci & Techn. B 21, 1765 (2003).Google Scholar
6 Lippert, G., Dabrowski, J., Melnik, V., Sorge, R., Wenger, C., Zaumseil, P., and Muessig, H-J., Appl. Phys. Lett. 86, 2902 (2005).Google Scholar
7 Xue, D., Betzler, K., and Hesse, H., J. Phys. Condens. Matter 12, 3113 (2000).Google Scholar
8 Hattori, T., Yoshida, T., Shiraishi, T., Takahashi, K., Nohira, H., Joumori, S., Nakajima, K., and Iwai, H., Microelectronic Engineering 72, 283 (2004).Google Scholar
9 Adachi, G., Imanaka, N., Chem. Rev. 98, 1479 (1998)Google Scholar
10 Norton, D.P., Mat. Sci & Engineer. R 43, 139 (2004).Google Scholar
11 Delugas, P. and Fiorentini, V., Microelectronics Reliability 45, 831 (2005).Google Scholar
12 Ono, H. and Katsumata, T., Appl. Phys. Lett. 78, 1832 (2001).Google Scholar
13 Fissel, A., Elassar, Z., Bugiel, E., Czernohorsky, M., Kirfel, O., and Osten, H. J., J. Appl. Phys. (in press)Google Scholar
14 Stemmer, S., Maria, J.P., and Kingon, A.I., Appl. Phys. Lett. 79, 102 (2001).Google Scholar
15 Kwo, J., Hong, M., Kortan, A. R., Queeny, K. T., Chabal, Y. J., Mannaerts, J. P., Boone, T., and Krajewski, J. J., Appl. Phys. Lett. 77, 130 (2000).Google Scholar
16 Nigro, R. Lo, Raineri, V., Bondiorno, C., Toro, R., Malandrino, G., and Fragala, I.L., Appl. Phys. Lett. 83, 129 (2003).Google Scholar
17 The latest edition of the ITRS roadmap can be found at http://public.itrs.netGoogle Scholar