Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T15:02:08.322Z Has data issue: false hasContentIssue false

Bound-exciton recombination in MgxZn1-xO thin films

Published online by Cambridge University Press:  31 January 2011

Christof Peter Dietrich
Affiliation:
c.dietrich@physik.uni-leipzig.de
Alexander Müller
Affiliation:
amueller@physik.uni-leipzig.de, Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, Germany
Marko Stölzel
Affiliation:
stoelzel@physik.uni-leipzig.de, Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, Germany
Martin Lange
Affiliation:
mlange@physik.uni-leipzig.de, Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, Germany
Gabriele Benndorf
Affiliation:
benndorf@rz.uni-leipzig.de, Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, Germany
Holger von Wenckstern
Affiliation:
wenckst@physik.uni-leipzig.de, Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, Germany
Marius Grundmann
Affiliation:
grundmann@physik.uni-leipzig.de, Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, Germany
Get access

Abstract

Excitons in semiconductor alloys feel a random disorder potential leading to inhomogeneous line broadening and a lack of knowledge about the dominating recombination processes. Nevertheless, we demonstrate competing localization effects due to disorder (random potential fluctuations) and shallow point defects. We were able to spectrally separate donor-bound and quasi-free excitons within the whole wurtzite-type composition range of MgxZn1-xO (0 ≤ x ≤ 0.33) using spectrally resolved (x ≤ 0.06) and time-resolved photoluminescence (x ≥ 0.08). We found out that donor-bound excitons dominate photoluminescence spectra even for Mg-contents up to x = 0.18 and still appear for x = 0.33.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adachi, S., Properties of Semiconductor Alloys (Wiley, Chichester, 2009).10.1002/9780470744383Google Scholar
[2] Thomas, D.G., J. Phys. Chem. Sol. 15, 86 (1960).10.1016/0022-3697(60)90104-9Google Scholar
[3] Zimmermann, R., J. Cryst. Growth 101, 346 (1990).10.1016/0022-0248(90)90993-UGoogle Scholar
[4] Christen, J. and Bimberg, D., Phys. Rev. B 42, 7213 (1990).10.1103/PhysRevB.42.7213Google Scholar
[5] Müller, A., Stölzel, M., Dietrich, C.P., Benndorf, G., Lorenz, M. and Grundmann, M., J. Appl. Phys. 107, 013704 (2010).10.1063/1.3270431Google Scholar
[6] Meyer, B.K. et al., Phys. stat. sol. B 241, 231 (2004).10.1002/pssb.200301962Google Scholar
[7] Bimberg, D., Sondergelb, M. and Grobe, E., Phys. Rev. B 4, 3451 (1971).10.1103/PhysRevB.4.3451Google Scholar
[8] Viña, L., Logothetidis, S. and Cardona, M., Phys. Rev. B 30, 1979 (1984).10.1103/PhysRevB.30.1979Google Scholar
[9] Grundmann, M. and Dietrich, C.P., J. Appl. Phys. 106, 123521 (2009).10.1063/1.3267875Google Scholar
[10] Li, Q., Xu, S. J., Cheng, W. C., Xie, M. H., Tong, S. Y., Che, C. M., and Yang, H., Appl. Phys. Lett. 79, 1810 (2001).10.1063/1.1403655Google Scholar
[11] Heitsch, S. et al., J. Appl. Phys. 101, 083521 (2007).10.1063/1.2719010Google Scholar
[12] Wassner, T.A., Laumer, B., Maier, S., Laufer, A., Meyer, B.K., Stutzmann, M. and Eickhoff, M., J. Appl. Phys. 105, 023505 (2009).10.1063/1.3065535Google Scholar
[13] Berberan-Santos, M., Bodunov, E. and Valeur, B., Chem. Phys. 315, 171 (2005).10.1016/j.chemphys.2005.04.006Google Scholar
[14] Berberan-Santos, M., Bodunov, E. and Valeur, B., Chem. Phys. 317, 57 (2005).10.1016/j.chemphys.2005.05.026Google Scholar