Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T23:56:22.089Z Has data issue: false hasContentIssue false

Low Energy Electron Diffraction During Pulsed Laser Annealing: A Time Resolved Surface Structural Study

Published online by Cambridge University Press:  22 February 2011

R. S. Becker
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
G. S. Higashi
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. A. Golovchenko
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Nanosecond structural changes in a crystal lattice during pulsed laser annealing have been measured using time-resolved Low Energy Electron Diffraction (LEED). LEED is both structure and surface (∼ 10Å) sensitive. Lattice temperatures can be extracted from Debye-Waller like extinction coefficients. Combining these with nanosecond time resolution provides a surface probe for short-time dynamical processes. The technique is used to observe the time evolution of a Ge(l11) surface during pulsed laser annealing. The results demonstrate rapid formation of a liquid layer and subsequent surface recrystallization and cooling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Auston, D. H., Golovchenko, J. A., Simons, A. L., Slusher, R. F., Smith, P. R., Surko, C. M., Venkatesan, N. C., AlP Conf. Proc. 50 (11), (1979).Google Scholar
[2]Lowndes, D. H., Wood, R. F., Westbrook, R. D., Appl. Phys. Lett., 42 (3) p. 258, (1983).Google Scholar
[3]Liu, J. M., Kurz, H., Bloembergen, N., Appl. Phys. Lett., 41 (7), p. 693, (1982).Google Scholar
[4]Shank, C. V., Yen, R., Hirliman, C., Phys. Rev. Lett., 50 (6), p. 454, (1983).Google Scholar
[5]Larson, B. C., White, C. W., Noggle, T. S., Mills, D., Phys. Rev. Lett., 48, (5), p. 387, (1982).Google Scholar
[6]Larson, B. C., White, C. W., Noggle, T. S., Barhorst, J. F., Mills, D. M., Appl. Phys. Lett., 42 (3), p. 232, (1983).Google Scholar
[7]Lo, H. W. and Campaan, A., Phys. Rev. Lett., 44 (24), p. 1604, (1980).Google Scholar
[8]von der Linde, D., Wartmann, C., Appl. Phys. Lett., 41, p. 700, (1982).Google Scholar
[9]von der Linde, D., Wartmann, C., Compaan, A., Appl. Phys. Lett., 43 (6), 613, (1983).Google Scholar
[10]Pospiesczyk, A., Harith, M. A., Stritzker, B., J. Appl. Phys.,54(6)p.3176, (1983).Google Scholar
[11]Mourou, C. and Williamson, S., Appl. Phys. Lett., 41, p. 44, (1982).Google Scholar
[12]Hosokowa, T., Fujioka, H., Ura, K., Rev. Sci. Instr. 49 (9), p. 1293, (1978).Google Scholar
[13]Shank, C. V., Yen, R., Hirliman, C., to be published in Phys. Rev. Lett., 51 (10), p. 900,(1983).Google Scholar
[14]Haneman, D. in “Surface Physics of Phosphors and Semiconductors,” Scott, C. G. and Reed, C. E., editors (Academic Press Inc., London, 1975) pp. 5865.Google Scholar
[15] Literature results indicate that each laser shot does incremental optical damage to Ge, moreover Ge shows a marked tendency to form permanent surface ripples, especially at the pump laser fluences used in this work (Ehrlich, D. J., Brueck, S. R. J., Tsao, J. Y., Appl. Phys. Lett., 41 (7), 630, (1982)).Google Scholar
15a Our observations show, however, that these processes have negligible effect on the LEED intensity until the damage is extreme.Google Scholar
[16]“International Tables for X-ray Crystallography,” vol. III, p. 241, Fulley, G., (Kynoch Press, Birmingham, England, 1972).Google Scholar
[17] The intensity data at 140 eV can be used to extract a Debye temperature for the surface vibrational states. This is found to be 195°K, in good agreement with the Debye temperature of 290°K (see reference 14) when the latter is divided by to account for the lowered surface vibrational frequencies.Google Scholar