Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T03:57:18.949Z Has data issue: false hasContentIssue false

Fabrication and Luminescence Properties of Monoclinic Gallium Oxide (β-Ga2O3) Nanostructures

Published online by Cambridge University Press:  01 February 2011

Aurangzeb Khan
Affiliation:
khan@phy.ohiou.edu, Ohio University, Department of Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States
Wojciech M. Jadwisienczak
Affiliation:
jadiwm@bobcat.ent.ohiou.edu, Ohio University, School of Electrical Engineering & Computer Science, Athens, OH, 45701, United States
Henryk J. Lozykowski
Affiliation:
Ohio University, School of Electrical Engineering & Computer Science, Athens, OH, 45701, United States
Martin E. Kordesch
Affiliation:
kordesch@phy.ohiou.edu, Ohio University, Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States
Get access

Abstract

β-Ga2O3 nanostructures including nanowires, nanorods, nano and micro-pillars, nanosheets and nanobelts were successfully fabricated by simple and efficient thermal evaporation and condensation technique under argon flow.. The structures have been investigated by the electron microscope, XRD and EDX techniques and shown that nanostructures are predominatly β-Ga2O3 without other crystallographic phases. Cathodouminescence of as-grown nanostructures was investigated in the 10-300 K temperature range and exhibit luminescence band centered at 485 nm at 300 K due to donor-acceptor pair recombination. A new luminescence band centered at 387 nm developes at temperature below 150 K due to self-trapped exciton recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, J., Liu, Z., Lin, C. and Lin, J., J Cryst Growth 280, 99 (2005).Google Scholar
2. Zhang, J., Jiang, F., Chemical Physics, 289, 243 (2003).Google Scholar
3. Hu, J., Li, Q., Meng, X. M., Lee, C. S., and Lee, S. T., J. Phys. Chem. B 106, 9536 (2002).Google Scholar
4. Liang, C. H., Meng, G. W., Wang, G. Z., Wang, Y. W., Zhang, L.D., Zhang, S.Y, Appl. Phys. Lett. 78, 3202 (2001).Google Scholar
5. Harwig, T., Kellendonk, F., J. Solid State Chem. 24, 255 (1978).Google Scholar
6. Vasil'tsiv, V. I., Zakharko, Ya. M., Prim, Ya I., Ukr. Fiz. Zh. 33, 1320 (1988).Google Scholar
7. Khan, A., Jadwisienczak, W. M., Kordesch, M. E., Physica E 35, 207 (2006).Google Scholar
8. Jadwisienczak, W. M., Lozykowski, H. J., Perjeru, F., Chen, H., Kordesch, M., and Brown, I., Appl. Phys. Lett. 76, 3376 (2000).Google Scholar
9. Yu, D. P., Lee, C. L., Bello, I., Sun, X. S., Tang, Y. H., Zhou, G. W., Bai, Z. G., Zhang, Z., Feng, S. Q., Solid State Commun. 105, 403 (1998).Google Scholar
10. Villora, E. G., Hatanaka, K., Odaka, H., Sugawara, T., Miura, T., Fukumura, H. and Fukuda, T., Solid State Commun. 127, 385 (2003).Google Scholar
11. Kim, N. H., Kim, H. W., Applied Surface Science 242, 29 (2005).Google Scholar
12. Cho, S., Lee, J., Park, I.Y., and Kim, S., Materials Letters 57, 1004 (2002).Google Scholar