Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T01:03:34.412Z Has data issue: false hasContentIssue false

COMPARISON OF NUMERICAL AND ANALYTICAL APPROXIMATIONS OF THE EARLY EXERCISE BOUNDARY OF AMERICAN PUT OPTIONS

Published online by Cambridge University Press:  21 December 2010

M. LAUKO
Affiliation:
Department of Applied Mathematics & Statistics, Comenius University, 842 48 Bratislava, Slovakia (email: lauko5@st.fmph.uniba.sk, sevcovic@fmph.uniba.sk)
D. ŠEVČOVIČ*
Affiliation:
Department of Applied Mathematics & Statistics, Comenius University, 842 48 Bratislava, Slovakia (email: lauko5@st.fmph.uniba.sk, sevcovic@fmph.uniba.sk)
*
For correspondence; e-mail: sevcovic@fmph.uniba.sk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present qualitative and quantitative comparisons of various analytical and numerical approximation methods for calculating a position of the early exercise boundary of American put options paying zero dividends. We analyse the asymptotic behaviour of these methods close to expiration, and introduce a new numerical scheme for computing the early exercise boundary. Our local iterative numerical scheme is based on a solution to a nonlinear integral equation. We compare numerical results obtained by the new method to those of the projected successive over-relaxation method and the analytical approximation formula recently derived by Zhu [‘A new analytical approximation formula for the optimal exercise boundary of American put options’, Int. J. Theor. Appl. Finance9 (2006) 1141–1177].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2010

References

[1]Alobaidi, G., Mallier, R. and Deakin, A. S., “Laplace transforms and installment options”, Math. Models Methods Appl. Sci. 14 (2004) 11671189.CrossRefGoogle Scholar
[2]Ankudinova, J. and Ehrhardt, M., “On the numerical solution of nonlinear Black–Scholes equations”, Comput. Math. Appl. 56 (2008) 799812.CrossRefGoogle Scholar
[3]Barone-Adesi, G. and Whaley, R. E., “Efficient analytic approximation of American option values”, J. Finance 81 (1987) 301320.CrossRefGoogle Scholar
[4]Black, F. and Scholes, M., “The pricing of options and corporate liabilities”, J. Political Economy 81 (1973) 637654.CrossRefGoogle Scholar
[5]Bunch, D. S. and Johnson, H., “The American put option and its critical stock price”, J. Finance 55 (2000) 23332356.CrossRefGoogle Scholar
[6]Carr, P., Jarrow, R. and Myneni, R., “Alternative characterizations of American put options”, Math. Finance 2 (1992) 87106.CrossRefGoogle Scholar
[7]Chadam, J., “Free boundary problems in mathematical finance”, in: Progress in industrial mathematics at ECMI 2006, Volume 12 of Math. Ind. (Springer, Berlin, 2008) 655665.CrossRefGoogle Scholar
[8]Chen, X. and Chadam, J., “A mathematical analysis of the optimal exercise boundary for American put options”, SIAM J. Math. Anal. 38 (2007) 16131641.CrossRefGoogle Scholar
[9]Chen, X., Chadam, J., Jiang, L. and Zheng, W., “Convexity of the exercise boundary of the American put option on a zero dividend asset”, Math. Finance 18 (2008) 185197.CrossRefGoogle Scholar
[10]Ehrhardt, M. and Mickens, R., “A fast, stable and accurate numerical method for the Black–Scholes equation of American options”, Int. J. Theor. Appl. Finance 11 (2008) 471501.CrossRefGoogle Scholar
[11]Ekström, E., “Convexity of the optimal stopping boundary for the American put option”, J. Math. Anal. Appl. 299 (2004) 147156.CrossRefGoogle Scholar
[12]Ekström, E. and Tysk, J., “The American put is log-concave in the log-price”, J. Math. Anal. Appl. 314 (2006) 710723.CrossRefGoogle Scholar
[13]Elliott, C. M. and Ockendon, J. R., Weak and variational methods for free and moving boundary problems, Volume 59 of Res. Notes Math. (Pitman, London, 1982).Google Scholar
[14]Evans, J. D., Kuske, R. and Keller, J. B., “American options on assets with dividends near expiry”, Math. Finance 12 (2002) 219237.CrossRefGoogle Scholar
[15]Geske, R. and Johnson, H. E., “The American put option valued analytically”, J. Finance 39 (1984) 15111524.CrossRefGoogle Scholar
[16]Geske, R. and Roll, R., “On valuing American call options with the Black–Scholes European formula”, J. Finance 89 (1984) 443455.Google Scholar
[17]Hull, J. C., Options, futures, and other derivatives, 5th edn (Prentice Hall, Upper Saddle River, NJ, 2002).Google Scholar
[18]Johnson, H., “An analytic approximation of the American put price”, J. Finan. Quant. Anal. 18 (1983) 141148.CrossRefGoogle Scholar
[19]Karatzas, I., “On the pricing American options”, Appl. Math. Optim. 17 (1988) 3760.CrossRefGoogle Scholar
[20]Kuske, R. A. and Keller, J. B., “Optimal exercise boundary for an American put option”, Appl. Math. Finance 5 (1998) 107116.CrossRefGoogle Scholar
[21]Kwok, Y. K., Mathematical models of financial derivatives (Springer, Singapore, 1998).Google Scholar
[22]Kwok, Y. K. and Wu, L., “A front-fixing finite difference method for the valuation of American options”, J. Financial Engineering 6 (1997) 8397.Google Scholar
[23]MacMillan, L. W., “Analytic approximation for the American put option”, Adv. Futures Options Res. 1 (1986) 119134.Google Scholar
[24]Mallier, R. and Alobaidi, G., “The American put option close to expiry”, Acta Math. Univ. Comenian. (N.S.) 73 (2004) 161174.Google Scholar
[25]Mynemi, R., “The pricing of the American option”, Ann. Appl. Probab. 2 (1992) 123.Google Scholar
[26]Ševčovič, D., “Analysis of the free boundary for the pricing of an American call option”, European J. Appl. Math. 12 (2001) 2537.CrossRefGoogle Scholar
[27]Ševčovič, D., “An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black–Scholes equation”, Can. Appl. Math. Q. 15 (2007) 7797.Google Scholar
[28]Stamicar, R., Ševčovič, D. and Chadam, J., “The early exercise boundary for the American put near expiry: numerical approximation”, Can. Appl. Math. Q. 7 (1999) 427444.Google Scholar
[29]Wilmott, P., Howison, S. and Dewynne, J., The mathematics of financial derivatives (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[30]Zhu, S. P., “A new analytical approximation formula for the optimal exercise boundary of American put options”, Int. J. Theor. Appl. Finance 9 (2006) 11411177.CrossRefGoogle Scholar
[31]Zhu, S. P., “A simple approximation formula for calculating the optimal exercise boundary of American puts”, J. Appl. Math. Comput. (2010) accepted for publication.Google Scholar
[32]Zhu, S. P. and He, Z. W., “Calculating the early exercise boundary of American put options with an approximation formula”, Int. J. Theor. Appl. Finance 10 (2007) 12031227.CrossRefGoogle Scholar