Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:16:22.993Z Has data issue: false hasContentIssue false

Morphology Evolution of Pyramid-Like Nanostructures on Cobalt Thin Films During Deposition by Sputtering

Published online by Cambridge University Press:  11 February 2011

Get access

Abstract

The cobalt thin films are grown by D.C. magnetron sputtering as a function of the target-to-substrate distance, bias and power on both Si (100) and (111) substrates. The crystal structure and morphology of the thin films are characterized by 4-point probe, x-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscopy. It is found that the cobalt crystal structure can be varied from HCP to FCC by varying the target to-substrate distance from 6 to 10 cm. The resistivity, roughness and the preferred orientation of the thin films are greatly affected by the substrate bias and power. The lowest resistivity of Co films is 9.8 -cm when deposited at the target to-substrate distance of 6cm, the applied power of 50W and the substrate bias of -75 volts. In addition, pyramid-like nanostructures with sharp tips are formed on the surface of the thin films when negative bias is applied. The faceted planes on the nanostructures depend on the resulting Co crystal structure while the size and density are determined by the growth parameters. The evolution of the surface nanostructures are systematically examined as a function of substrate bias and thin film thickness. The formation mechanism of the surface nanostructures is discussed in the paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)