Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:18:21.065Z Has data issue: false hasContentIssue false

Synthesis, structure, and photoluminescence properties of Ce3+ and Tb3+ doped alkaline-earth silicate Sr2MgSi2O7 phosphors for WLEDs

Published online by Cambridge University Press:  12 January 2017

Yongqian Wang*
Affiliation:
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Yan Chen
Affiliation:
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Qimeng Sun
Affiliation:
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
Bing Yan*
Affiliation:
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
*
a) Address all correspondence to these authors. e-mail: cugwyq@126.com
b) e-mail: 554655019@qq.com
Get access

Abstract

In this research, Ce3+ and Tb3+ doped alkaline-earth silicate Sr2MgSi2O7 phosphors have been synthesized by solid-state reaction. The results show that the Sr2−x MgSi2O7:xCe3+ phosphors exhibit a violet–blue emission with excitation at 348 nm, whereas the Sr2−y MgSi2O7:yTb3+ phosphor show a green emission with excitation at 243 nm. In addition, the structure of Sr2MgSi2O7 host has been analyzed by Crystalmaker program. Staggered arrangements of [SiO4] and [MgO4] units in the Sr2MgSi2O7 system underlie possible chemical tuning and phase segregation, providing a potential candidate of tunable luminescence. A red shift of wave length is clarified by crystal field theory and Van Uitert expression. The FESEM image of Sr1.99MgSi2O7:0.01Ce3+ phosphors reveal that it has a proper particle size for application in WLEDs. With different Tb3+ doping concentration, the CIE chromaticity coordinates Sr2MgSi2O7:Tb3+ phosphors still remain a steady position. These results indicate that Sr2−x MgSi2O7:xCe3+, Sr2−y MgSi2O7:yTb3+ phosphors are promising phosphors for WLEDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Winston V. Schoenfeld

References

REFERENCES

George, N.C., Denault, K.A., and Seshadri, R.: Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481 (2013).CrossRefGoogle Scholar
Chen, J., Liu, Y., Mei, L.F., Liu, H.K., Fang, M.H., and Huang, A.H.: Crystal structure and temperature-dependent luminescence characteristics of KMg4(PO4)3:Eu2+ phosphor for white light-emitting diodes. Sci. Rep. 5, 9673 (2015).CrossRefGoogle ScholarPubMed
Höppe, H.A.: Recent developments in the field of inorganic phosphors. Angew. Chem., Int. Ed. 48, 3572 (2009).CrossRefGoogle ScholarPubMed
Jüstel, T., Nikol, H., and Ronda, C.: New developments in the field of luminescent materials for lighting and displays. Angew. Chem., Int. Ed. 37, 3084 (1998).3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Schubert, E.F. and Kim, J.K.: Solid-state light sources getting smart. Science 308, 1274 (2005).CrossRefGoogle ScholarPubMed
Lin, C.C. and Liu, R.S.: Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2, 1268 (2011).CrossRefGoogle ScholarPubMed
Li, Y.L., Zhang, D.D., Zhang, Y.G., Cai, M.H., and Duan, L.: Red phosphorescent organic light-emitting diodes based on a novel host material with thermally activated delayed fluorescent properties. Sci. China: Chem. 59, 684 (2016).Google Scholar
Li, Y.Y., Shi, Y.R., Zhu, G., Wu, Q.S., Li, H., Wang, X.C., Wang, Q., and Wang, Y.: A single-component white-emitting CaSr2Al2O6:Ce3+,Li+,Mn2+ phosphor via energy transfer. Inorg. Chem. 53, 7668 (2014).CrossRefGoogle ScholarPubMed
Li, G.G., Lin, C.C., Chen, W.T., Molokeev, M.S., Atuchin, V.V., Chiang, C.Y., Zhou, W.Z., Wang, C.W., Li, W.H., Sheu, H.S., Chan, T.S., Ma, C.G., and Liu, R.S.: Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms. Chem. Mater. 26, 2991 (2014).CrossRefGoogle Scholar
Wang, B., Lin, H., Xu, J., Chen, H., and Wang, Y.S.: CaMg2Al16O27: Mn4+-based red phosphor: A potential color converter for high-powered warm W-LED. ACS Appl. Mater. Interfaces 6, 22905 (2014).CrossRefGoogle ScholarPubMed
Hong, S. and Wang, L.: Up/downconversion luminescence rare-earth ion-doped Y2O3 1D nanocrystals. Sci. China: Chem. 55, 1242 (2012).CrossRefGoogle Scholar
Zhong, Y., Wang, Y., Han, S., Lv, Y.F., Wang, W.L., Zhang, D., Ding, H., Zhang, Y.M., Wang, L.L., He, K., Zhong, R.D., Schneeloch, J.A., Gu, G.D., Song, C.L., Ma, X.C., and Xue, Q.K.: Nodeless pairing in superconducting copper-oxide monolayer films on Bi2Sr2CaCu2O8+δ . Sci. Bull. 61, 1239 (2016).CrossRefGoogle Scholar
De Vries, A.J., Smeets, W.J.J., and Blasse, G.: The trapping of Gd3+ excitation energy by Cr3+ and rare earth ions in GdAlO3 . Mater. Chem. Phys. 18, 81 (1987).CrossRefGoogle Scholar
Shang, M.M., Geng, D.L., Zhang, Y., Li, G.G., Yang, D.M., Kang, X.J., and Lin, J.: Luminescence and energy transfer properties of Ca8Gd2(PO4)6O2:A (A = Ce3+/Eu2+/Tb3+/Dy3+/Mn2+) phosphors. J. Mater. Chem. 22, 19094 (2012).CrossRefGoogle Scholar
, W., Guo, N., Jia, Y.C., Zhao, Q., Lv, W.Z., Jiao, M.M., Shao, B.Q., and You, H.P.: Tunable color of Ce3+/Tb3+/Mn2+-coactivated CaScAlSiO6 via energy transfer: A single-component red/white-emitting phosphor. Inorg. Chem. 52, 3007 (2013).CrossRefGoogle ScholarPubMed
Park, W.B., Singh, S.P., Yoon, C., and Sohn, K.S.: Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu2+ . J. Mater. Chem. C 1, 1832 (2013).CrossRefGoogle Scholar
Blasse, G. and Bril, A.: Investigation of some Ce3+-activated phosphors. J. Chem. Phys. 47, 5139 (1967).CrossRefGoogle Scholar
Blasse, G. and Bril, A.: On the Eu3+ Fluorescence in mixed metal oxides. III. Energy transfer in Eu3+-activated tungstates and molybdates of the type Ln2WO6 and Ln2MoO6 . J. Chem. Phys. 45, 2350 (1966).CrossRefGoogle Scholar
He, X.W., Liu, X.F., Li, R.F., Yang, B., Yu, K.L., Zeng, M., and Yu, R.H.: Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Sci. Rep. 6, 22238 (2016).CrossRefGoogle ScholarPubMed
Wang, H.P., Ye, Z.R., Zhang, Y., and Wang, N.L.: Band structure reconstruction across nematic order in high quality FeSe single crystal as revealed by optical spectroscopy study. Sci. Bull. 61, 1126 (2016).CrossRefGoogle Scholar
Li, G.H., Li, M.M., Li, L.L., Yong, H., Zou, H.F., Zou, L.C., Gan, S.C., and Xu, X.C.: Luminescent properties of Sr2Al2SiO7:Ce3+,Eu2+ phosphors for near UV-excited white light-emitting diodes. Mater. Lett. 65, 3418 (2011).CrossRefGoogle Scholar
Zhang, X.G., Tang, X.P., Zhang, J.L., Wang, H.H., Shi, J.X., and Gong, M.L.: Luminescent properties of Sr2MgSi2O7:Eu2+ as blue phosphor for NUV light-emitting diodes. Powder Technol. 204, 263 (2010).CrossRefGoogle Scholar
Li, G., Wang, Y.H., Zeng, W., Chen, W.B., Han, S.C., Guo, H.J., and Wang, X.C.: Luminescence properties of a new green afterglow phosphor NaBaScSi2O7:Eu2+ . Dalton Trans. 44, 17572 (2015).CrossRefGoogle ScholarPubMed
Yan, J., Ning, L.X., Huang, Y.C.M., Hou, D.J., Zhang, B.B., Huang, Y., Tao, Y., and Liang, H.B.: Luminescence and electronic properties of Ba2MgSi2O7: Eu2+: A combined experimental and hybrid density functional theory study. J. Mater. Chem. C 2, 8328 (2014).CrossRefGoogle Scholar
Li, B.H., Yang, J., Wang, J., and Wu, M.M.: Two-color emitting of Eu2+ and Tb3+ co-doped Sr2MgSi2O7 for UV LEDs. Opt. Mater. 36, 1649 (2014).CrossRefGoogle Scholar
Kimata, M.: The structural properties of synthetic Sr-åkermanite, Sr2MgSi2O7 . Z. Kristallogr. –Cryst. Mater. 163, 295 (1983).CrossRefGoogle Scholar
Saradhi, M.P., Boudin, S., Varadaraju, U.V., and Raveau, B.: A new BaB2Si2O8:Eu2+/Eu3+,Tb3+ phosphor–synthesis and photoluminescence properties. J. Solid State Chem. 183, 2496 (2010).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
Pauling, L.: Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542 (1947).CrossRefGoogle Scholar
Tamura, Y. and Shibukawa, A.: Optical studies of CaS: Eu, Sm infrared stimulable phosphors. Jpn. J. Appl. Phys. 32, 3187 (1993).Google Scholar
Adane, A., Klein, J., Leger, A., Belin, M., and Defourneau, D.: Intensity analysis of inelastic tunneling due to excitation of electronic transitions in rare-earth oxides. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 4443 (1984).CrossRefGoogle Scholar
Dexter, D.L. and Schulman, J.H.: Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063 (1954).CrossRefGoogle Scholar
Van Uitert, L.G.: Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048 (1967).CrossRefGoogle Scholar
Zhang, J., Huang, L.H., Liu, P.L., Wang, Y., Jiang, X.D., Zhang, E.P., Wang, H.B., Kong, Z., Xi, J.H., and Ji, Z.G.: Heterostructure of epitaxial (001) Bi4Ti3O12 growth on (001) TiO2 for enhancing photocatalytic activity. J. Alloys Compd. 654, 71 (2016).CrossRefGoogle Scholar
Jang, H.S., Im, W.B., Lee, D.C., Jeon, D.Y., and Kim, S.S.: Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. Lumin. 126, 371 (2007).CrossRefGoogle Scholar
McClure, D.S.: The distribution of transition metal cations in spinels. J. Phys. Chem. Solids 3, 311 (1957).CrossRefGoogle Scholar
Zhang, J., Huang, L.H., Yang, L.X., Lu, Z.D., Wang, X.Y., Xu, G.L., Zhang, E.P., Wang, H.B., Kong, Z., Xi, J.H., and Ji, Z.G.: Controllable synthesis of Bi2WO6(001)/TiO2(001) heterostructure with enhanced photocatalytic activity. J. Alloys Compd. 676, 37 (2016).CrossRefGoogle Scholar
Lin, J. and Su, Q.: Luminescence and energy transfer of rare-earth-metal ions in Mg2Y8(SiO4)6O2 . J. Mater. Chem. 5, 1151 (1995).CrossRefGoogle Scholar
Metz, F.: Theory of intramolecular radiationless transitions: I. Discussion of Frank–Condon factors of large polyatomic molecules over the whole energy region. Chem. Phys. 18, 385 (1976).CrossRefGoogle Scholar
Kumar, V., Khan, A.F., and Chawla, S.: Intense red-emitting multi-rare-earth doped nanoparticles of YVO4 for spectrum conversion towards improved energy harvesting by solar cells. J. Phys. D: Appl. Phys. 46, 365101 (2013).CrossRefGoogle Scholar
Guo, N., Huang, Y.J., You, H.P., Yang, M., Liu, K., and Zheng, Y.H.: Ca9Lu(PO4)7:Eu2+,Mn2+: A potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes. Inorg. Chem. 49, 10907 (2010).CrossRefGoogle Scholar
Ning, L.X., Mak, C.S.K., and Tanner, P.A.: High-spin and low-spin fd transitions of Tb3+ in elpasolite hosts. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 085127 (2005).CrossRefGoogle Scholar
Ten Kate, O.M., Zhang, Z., Dorenbos, P., Hintzen, H.T., and Van Der Kolk, E.: 4f and 5d energy levels of the divalent and trivalent lanthanide ions in M2Si2N8 (M = Ca, Sr, Ba). J. Solid State Chem. 197, 209 (2013).CrossRefGoogle Scholar
Zhang, J., Huang, L.H., Jin, H.Y., Sun, Y.L., Ma, X.M., Zhang, E.P., Wang, H.B., Kong, Z., Xi, J.H., and Ji, Z.G.: Constructing two-dimension MoS2/Bi2WO6 core-shell heterostructure as carriers transfer channel for enhancing photocatalytic activity. Mater. Res. Bull. 85, 140 (2017).CrossRefGoogle Scholar
Ye, S., Xiao, F., Pan, Y.X., Ma, Y.Y., and Zhang, Q.Y.: Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng., R 71, 1 (2010).CrossRefGoogle Scholar
Zhang, X.G., Zhou, L.Y., Pang, Q., Shi, J.X., and Gong, M.L.: Tunable luminescence and Ce3+ → Tb3+ → Eu3+ energy transfer of broadband-excited and narrow line red emitting Y2SiO5:Ce3+,Tb3+,Eu3+ phosphor. J. Phys. Chem. C 118, 7591 (2014).CrossRefGoogle Scholar