Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T04:06:11.500Z Has data issue: false hasContentIssue false

On the origin of 'iron-cross' twins of pyrite from Mt. Katarina, Slovenia

Published online by Cambridge University Press:  02 January 2018

Aleksander Rečnik*
Affiliation:
Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
Janez Zavašnik
Affiliation:
Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
Lei Jin
Affiliation:
Peter Grünberg Institute and Ernst Ruska-Centre (ER-C) for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, D-52425 Jülich, Germany
Andrea Čobić
Affiliation:
Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 95, CR-10000 Zagreb, Croatia
Nina Daneu
Affiliation:
Department for Nanostructured Materials, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

Abstract

Iron-cross twins of pyrite are well known among mineralogists, however it is quite surprising that the conditions of their formation remain unexplored. To address this question we studied pyrite twins from the Upper Permian silts of Mt. Katarina near Ljubljana (Slovenia), which represent one of the most typical geological environments for twinned pyrite. Mineralization of pyrite starts with a reduction of the primary red-coloured hematite-rich sediment by sulfide-rich fluids that penetrated the strata. A short period of magnetite crystallization is observed prior to pyrite crystallization, which indicates a gradual reduction process. Sulfur isotope analysis of pyrite shows an enrichment in δ34S, suggesting its origin from the neighbouring red-bed deposit. Other sulfides, such as chalcopyrite and galena, formed at the end of pyrite crystallization. Remnants of mineralizing fluids trapped at the interfaces between the inclusions and host pyrite show trace amounts of Pb and Cu, indicating their presence in the solutions throughout the period of pyrite crystallization. An electron microscopy and spectroscopy study of twin boundaries showed that interpenetration twinning is accomplished through a complex 3D intergrowth of primary {110} Cu-rich twin boundaries, and secondary {100} boundaries that are pure. We show that approximately one monolayer of Cu atoms is necessary to stabilize the {110} twin structure. When the source of Cu is interrupted, the two crystal domains continue to form {100} interfaces, that are more favourable for pure pyrite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Budkovič, T. (1981) Exploration at Žirovski vrh uranium deposit on principle of the geochemical cell. Geologija, 24/2, 723.Google Scholar
Cabral, A.R., Beaudoin, G. and Munnik, F. (2011) Lead in diagenetic pyrite: evidence for Pb-tolerant bacteria in a red-bed Cu deposit, Quebec Appalachians, Canada. Mineralogical Magazine, 75, 295302.CrossRefGoogle Scholar
Canfield, D.E. and Berner, R.A. (1987) Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica et Cosmochimica Acta, 51, 645659.CrossRefGoogle Scholar
Cheney, E.S. and Jensen, M.L. (1966) Stable isotopic geology of the Gas Hills, Wyoming, uranium district. Economic Geology and the Bulletin of the Society of Economic Geologists, 61, 4471.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103(2), 203207.CrossRefGoogle Scholar
Cocco, G. and Garavelli, C. (1954) Studio di alcuni problemi geochimici relativi al giacimento di ferro di Capo Calamita (Elba). Rendiconti della Società Mineralogica Italiana, 10, 269350.Google Scholar
Coplen, T.B. and Krouse, H.R. (1998) Sulfur isotope data consistency improved. Nature, 392, 32.CrossRefGoogle Scholar
Curtis, C.D., Hughes, C.R., Whiteman, J.A. and Whittle, C.K. (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineralogical Magazine, 49, 375386.CrossRefGoogle Scholar
Daneu, N., Rečnik, A., Yamazaki, T. and Dolenec, T. (2007) Structure and chemistry of (111) twin boundaries in MgAl2O4 spinel crystals from Mogok. Physics and Chemistry of Minerals, 34, 233247.CrossRefGoogle Scholar
Daneu, N. and Rečnik, A. (2012) The atomic-scale aspects of twinning and polytypism in minerals. Acta mineralogica-petrographica (Szeged), 34, 32—37.Google Scholar
Dolenec, T. (1983) The formation of uranium ore deposit Žirovski vrh.Doctoral dissertation. University of Ljubljana, 287 pp.Google Scholar
Donnay, G., Donnay, J.D.H.. and Iijima, S. (1977) A high-resolution electron micrograph of the twin boundary in pyrite. Acta Crystallographica, A33, 622—626.CrossRefGoogle Scholar
Drake, H, Åström, M.E., Tullborg E.L., Whitehouse, M. and Fallick, A.E. (2013) Variability of sulfur isotope ratios in pyrite and dissolved sulfate in granitoid fractures down to 1 km depth - Evidence for widespread activity of sulfur reducing bacteria. Geochimica et Cosmochimica Acta, 102, 143161.CrossRefGoogle Scholar
Drev, S., Rečnik, A. and Daneu, N. (2013) Twinning and epitaxial growth of taaffeite-type modulated structures in BeO-doped MgAl2O4 . CrystEngComm, 15, 26402647.CrossRefGoogle Scholar
Folk, R.L. (2005) Nano-bacteria and the formation of framboidal pyrite: textural evidence. Journal of Earth System Science, 114, 369374.CrossRefGoogle Scholar
Goldschmidt, V and Nicol, W (1904) Spinellgesetz beim Pyrit und über Rangordnung der Zwillingsgesetze. Neues Jahrbuch für Mineralogie, 2, 93113.Google Scholar
Gliszczynski von, S. (1950) Zur strukturgeometrischen Deutung der Zwillinge des Eisernen Kreutzes bei Pyrit. Neues Jahrbuch für Mineralogie - Monatshefte, 1, 2529.Google Scholar
Hessel, (1869) Über einige Eisenkies-Zwillinge. Annalen der Physik, 213, 536548.CrossRefGoogle Scholar
Houten van, F.B. (1973) Origin of red beds. A review 1961-1972. Annual Review of Earth and Planetary Science, 1, 3961.CrossRefGoogle Scholar
Jahn, S. (2001) Pyrit-Zwillinge aus dem Raum Vlotho- Exter. Mineralien Welt, 12, 32—51.Google Scholar
Jochum, J., Friedrich, G., Leythaeuser, D. and Littke, R. (1995) Intraformational redistribution of selected trace elements in the Posidonia Shale (Hils Syncline, NW Germany) caused by the thermal influence of the Vlotho Massif. Ore Geology Reviews, 9, 353—362.CrossRefGoogle Scholar
Mlakar, I. (2002a) Val Gardena formation in Pb-Zn-Hg deposit Knapovže (Slovenia). Geologija, 45, 2533.CrossRefGoogle Scholar
Mlakar, I. (2002b) Val Gardena formation near Polhov Gradec (Slovenia). Geologija, 45, 3545.CrossRefGoogle Scholar
Pabst, A. (1931) Pressure-shadows and the measurement of the orientation of minerals in rocks. American Mineralogist, 16, 55—70.Google Scholar
Pačevski, A., Libowitzky, E., Živkovic, P. and Cvetkovic, L. (2008) Copper-bearing pyrite from the Čoka Marin polymetallic deposit, Serbia: Mineral inclusions or true solid-solution?. The Canadian Mineralogist, 46, 249261.CrossRefGoogle Scholar
Rečnik, A. (2007) Mineral localities of Slovenia., Jožef Stefan Institute, Ljubljan 355367.Google Scholar
Rečnik, A., Daneu, N., Walther, T. and Mader, W. (2001) Structure and chemistry of basal-plane inversion boundaries in antimony oxide-doped zinc oxide. Journal of the American Ceramic Society, 84, 26572668.CrossRefGoogle Scholar
Seal, R.R., II (2006) Sulfur isotope geochemistry of sulfide minerals. Pp. 633-677 in Sulphide Mineralogy and Geochemistry, (D.J. Vaughan, editor). Reviews in Mineralogy & Geochemistry, 61. Mineralogical Society of America and the Geochemical Societe Washington DC.Google Scholar
Skaberne, D. (1981) Sedimentological investigations of Val Gardena formation near Sovodenj.Masters thesis. University of Ljubljana, 218 pp.Google Scholar
Šrot, V.A. Rečnik, C. Scheu, S. Šturm and B. Mirtič (2003) Stacking faults and twin boundaries in sphalerite crystals from the Trepča mines in Kosovo. American Mineralogist, 88, 18091816.CrossRefGoogle Scholar
Strunz, H and Tennyson, Ch. (1965) Strukturelle Deutung der Pyrit- und Markasitzwillinge. Neues Jahrbuch für Mineralogie — Monatshefte, 15, 247—248.Google Scholar
Tanelli, G., Benvenuti, M., Costagliola, P., Dini, A., Lattanzi, P., Maineri, C., Mascaro, I. and Ruggieri, G. (2001) The iron mineral deposits of Elba island: state of the art. Ofioliti, 26(2a), 239248.Google Scholar
Thode, H.G., Monster, J., Dunford, H.B. (1961) Sulfur isotope geochemistry. Geochimica et Cosmochimica Acta, 25, 150174.CrossRefGoogle Scholar
Walker, T.R., Larson, E.E., Hoblitt, R.P. (1980) Nature and Origin of Hematite in the Moenkopi Formation (Triassic), Colourado Plateau: A Contribution to the Origin of Magnetism in Red Beds. Journal of Geophysical Research, 86(B1), 317333.CrossRefGoogle Scholar
Walther, T., Daneu, N. and Rečnik, A. (2004) A new method to measure small amounts of solute atoms on planar defects and application to inversion domain boundaries in doped zinc oxide. Interface Science, 12, 267275.CrossRefGoogle Scholar
Zavašnik, J. (2009) Pyrite occurrence at Katarina Mountain near Ljubljana., Diploma thesis. Faculty for Natural Sciences and Technology, University of Ljubljan 104.pp.Google Scholar