Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T09:16:34.130Z Has data issue: false hasContentIssue false

Predicting childhood effortful control from interactions between early parenting quality and children's dopamine transporter gene haplotypes

Published online by Cambridge University Press:  30 April 2015

Yi Li
Affiliation:
Arizona State University
Michael J. Sulik
Affiliation:
Arizona State University
Nancy Eisenberg*
Affiliation:
Arizona State University
Tracy L. Spinrad
Affiliation:
Arizona State University
Kathryn Lemery-Chalfant
Affiliation:
Arizona State University
Daryn A. Stover
Affiliation:
Arizona State University
Brian C. Verrelli
Affiliation:
Virginia Commonwealth University
*
Address correspondence and reprint requests to Nancy Eisenberg, Department of Psychology, Arizona State University, Tempe, AZ 85287-1104; E-mail: Nancy.Eisenberg@asu.edu.

Abstract

Children's observed effortful control (EC) at 30, 42, and 54 months (n = 145) was predicted from the interaction between mothers' observed parenting with their 30-month-olds and three variants of the solute carrier family C6, member 3 (SLC6A3) dopamine transporter gene (single nucleotide polymorphisms in intron8 and intron13, and a 40 base pair variable number tandem repeat [VNTR] in the 3′-untranslated region [UTR]), as well as haplotypes of these variants. Significant moderating effects were found. Children without the intron8-A/intron13-G, intron8-A/3′-UTR VNTR-10, or intron13-G/3′-UTR VNTR-10 haplotypes (i.e., haplotypes associated with the reduced SLC6A3 gene expression and thus lower dopamine functioning) appeared to demonstrate altered levels of EC as a function of maternal parenting quality, whereas children with these haplotypes demonstrated a similar EC level regardless of the parenting quality. Children with these haplotypes demonstrated a trade-off, such that they showed higher EC, relative to their counterparts without these haplotypes, when exposed to less supportive maternal parenting. The findings revealed a diathesis–stress pattern and suggested that different SLC6A3 haplotypes, but not single variants, might represent different levels of young children's sensitivity/responsivity to early parenting.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In Marcoulides, G. A. & Schumacker, R. E. (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243277). Mahwah, NJ: Erlbaum.Google Scholar
Asherson, P., Brookes, K., Franke, B., Chen, W., Gill, M., Ebstein, R. P., et al. (2007). Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. American Journal of Psychiatry, 164, 674677.Google Scholar
Bakermans-Kranenburg, M. J., Dobrova-Krol, N., & van IJzendoorn, M. (2012). Impact of institutional care on attachment disorganization and insecurity of Ukrainian preschoolers: Protective effect of the long variant of the serotonin transporter gene (5HTT). International Journal of Behavioral Development, 36, 1118.Google Scholar
Bannon, M. J., & Whitty, C. J. (1997). Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology, 48, 969977.CrossRefGoogle ScholarPubMed
Beeler, J. A. (2012). Thorndike's law 2.0: Dopamine and the regulation of thrift. Frontiers in Neuroscience, 6, 112.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52, 619626.CrossRefGoogle ScholarPubMed
Bender, S., Rellum, T., Freitag, C., Resch, F., Rietschel, M., Treutlein, J., et al. (2012). Dopamine inactivation efficacy related to functional DAT1 and COMT variants influences motor response evaluation. PLOS ONE, 7, e37814.Google Scholar
Claw, K. G., Tito, R. Y., Stone, A. C., & Verrelli, B. C. (2010). Haplotype structure and divergence at human and chimpanzee serotonin transporter and receptor genes: Implications for behavioral disorder association analyses. Molecular Biology and Evolution, 27, 15181529.CrossRefGoogle ScholarPubMed
Colton, J. A., & Bower, K. M. (2002). Some misconceptions about r 2 . International Society of Six Sigma Professionals, EXTRA Ordinary Sense, 3, 2022. Retrieved from http://blog.minitabcentroamerica.com/uploadedFiles/Shared_Resources/Documents/Articles/r2_misconceptions.pdf Google Scholar
Cook, E. H. Jr., Stein, M. A., Krasowski, M. D., Cox, N. J., Olkon, D. M., Kieffer, J. E., et al. (1995). Association of attention-deficit disorder and the dopamine transporter gene. American Journal of Human Genetics, 56, 993998.Google ScholarPubMed
Cornish, K. M., Manly, T., Savage, R., Swanson, J., Morisano, D., & Hollis, C. P. (2005). Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Molecular Psychiatry, 10, 686698.CrossRefGoogle Scholar
del Campo, N., Chamberlain, S. R., Sahakian, B. J., & Robbins, T. W. (2011). The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biological Psychiatry, 69, E145E157.Google Scholar
Durston, S., Fossella, J. A., Casey, B. J., Hulshoff Pol, H. E., Galvan, A., Schnack, H. G., et al. (2005). Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Molecular Psychiatry, 10, 678685.Google Scholar
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences, 98, 69176922.Google Scholar
Eisenberg, N., Cumberland, A., & Spinrad, T. L. (1998). Parental socialization of emotion. Psychological Inquiry, 9, 241273.CrossRefGoogle ScholarPubMed
Eisenberg, N., Spinrad, T., & Eggum, N. D. (2010). Emotion-related self-regulation and its relation to children's maladjustment. Annual Review of Clinical Psychology, 6, 495525.CrossRefGoogle ScholarPubMed
Eisenberg, N., Spinrad, T. L., Eggum, N. D., Silva, K., Reiser, M., Hofer, C., et al. (2010). Relations among maternal socialization, effortful control, and maladjustment in early childhood. Development and Psychopathology, 22, 507525.CrossRefGoogle ScholarPubMed
Fish, M., Stifter, C. A., & Belsky, J. (1991). Conditions of continuity and discontinuity in infant negative emotionality: Newborn to five months. Child Development, 62, 15251537.Google Scholar
Franke, B., Vasquez, A. A., Johansson, S., Hoogman, M., Romanos, J., Boreatti-Hümmer, A., et al. (2010). Multicenter analysis of the SLC6A3/DAT1 VNTR haplotype in persistent ADHD suggests differential involvement of the gene in childhood and persistent ADHD. Neuropsychopharmacology, 35, 656664.Google Scholar
Greenwood, T. A., Schork, N. J., Eskin, E., & Kelsoe, J. R. (2006). Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Molecular Psychiatry, 11, 125133.Google Scholar
Guindalini, C., Howard, M., Haddley, K., Laranjeira, R., Collier, D., Ammar, N., et al. (2006). A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proceedings of the National Academy of Science, 103, 45524557.Google Scholar
Guo, G., Roettger, M. E., & Shih, J. C. (2007). Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Human Genetics, 121, 125136.CrossRefGoogle ScholarPubMed
Hicks, B., South, A., DiRago, A. C., William, G. I., Iacono, W., & McGue, M. (2009). Environmental adversity and increasing genetic risk for externalizing disorders. Archives of General Psychiatry, 66, 640648.Google Scholar
Hill, M., Anney, R. J., Gill, M., & Hawi, Z. (2010). Functional analysis of intron 8 and 3′UTR variable number of tandem repeats of SLC6 A3: Differential activity of intron 8 variants. Pharmacogenomics Journal, 10, 442447.CrossRefGoogle Scholar
Johnson, W. (2007). Genetic and environmental influences on behavior: Capturing all the interplay. Psychological Review, 114, 423440.Google Scholar
Karreman, A., van Tuijl, C., van Aken, M. A. G., & Deković, M. (2008). Parenting, coparenting, and effortful control in preschoolers. Journal of Family Psychology, 22, 3040.Google Scholar
Kochanska, G., Kim, S., Barry, R. A., & Philibert, R. A. (2011). Children's genotypes interact with maternal responsive care in predicting children's competence: Diathesis–stress or differential susceptibility? Development and Psychopathology, 23, 605616.CrossRefGoogle ScholarPubMed
Kochanska, G., & Knaack, A. (2003). Effortful control as a personality characteristic of young children: Antecedents, correlates, and consequences. Journal of Personality, 71, 10871112.Google Scholar
Kochanska, G., Murray, K. T., & Harlan, E. T. (2000). Effortful control in early childhood: Continuity and change, antecedents, and implications for social development. Developmental Psychology, 36, 220232.CrossRefGoogle ScholarPubMed
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother–child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338.CrossRefGoogle ScholarPubMed
Kopp, C. B., & Neufeld, S. J. (2003). Emotional development during infancy. In Davidson, R., Scherer, K. R., & Goldsmith, H. H. (Eds.), Handbook of affective sciences (pp. 347374). London: Oxford University Press. Google Scholar
Lahey, B. B, Rathouz, P. J., Lee, S. S., Chronis-Tuscano, A., Pelham, W. E., Waldman, I. D., et al. (2011). Interactions between early parenting and a polymorphism of the child's dopamine transporter gene in predicting future child conduct disorder symptoms. Journal of Abnormal Psychology, 1, 3345.CrossRefGoogle Scholar
Li, J. J., & Lee, S. S. (2012). Interaction of dopamine transporter (DAT1) genotype and maltreatment for ADHD: A latent class analysis. Journal of Child Psychology and Psychiatry, 53, 9971005.Google Scholar
Matrenza, C., Hughes, J.-M., Kemp, A. H., Wesnes, K. A., Harrison, B. J., & Nathan, P. J. (2004). Simultaneous depletion of serotonin and catecholamines impairs sustained attention in healthy female subjects without affecting learning and memory. Journal of Psychopharmacology, 18, 2131.Google Scholar
McArdle, J. J., & Prescott, C. A. (2010). Contemporary modeling of gene-by-environment effects in randomized multivariate longitudinal studies. Perspectives in Psychological Science, 5, 606621.Google Scholar
Millsap, R. E., & Cham, H. (2012). Investigating factorial invariance in longitudinal data. In Laursen, B., Little, T. D., & Card, N. A. (Eds.), Handbook of developmental research methods (pp. 109128). New York: Guilford Press.Google Scholar
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors: From structure to function. Physiological Reviews, 78, 190212.Google Scholar
Mitchell, R. J., Howlett, S., Earl, L., White, N. G., Mccomb, J., & Schanfield, M. S., et al. (2000). Distribution of the 3′ VNTR polymorphism in the human dopamine transporter gene in world population. Human Biology, 72, 295304.Google Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis–stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of family context in the development of emotion regulation. Social Development, 16, 361388.Google Scholar
Muris, P., & Ollendick, T. H. (2005). The role of temperament in the etiology of child psychopathology. Clinical Child and Family Psychology Review, 8, 271289.Google Scholar
Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.Google Scholar
Pluess, M., & Belsky, J. (2012). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 134, 901916.Google Scholar
Power, T. G. (2004). Stress and coping in childhood: The parents' role. Parenting: Science and Practice, 4, 271317.Google Scholar
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945959.Google Scholar
Roddriguiz, R. M., Chu, R., Caron, M. G., & Wetsel, W. C. (2004). Aberrant responses in social interaction of dopamine transporter knockout mice. Behavioral Brain Research, 148, 185198.Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W. & Lerner, R. (Series Eds.) & Damon, W. & Lerner, R. (Vol. Eds.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (6th ed., pp. 99166). Hoboken, NJ: Wiley.Google Scholar
Rowe, D. C., Stever, C., Gard, J. M., Cleveland H., Sanders, M. J., Abramowitz, A., et al. (1998). The relation of the dopamine transporter gene (DAT1) to symptoms of internalizing disorders in children. Behavior Genetics, 28, 215225.CrossRefGoogle ScholarPubMed
Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Science, 102, 14931–14396.CrossRefGoogle ScholarPubMed
Rutter, M., & Silberg, J. (2002). Gene–environment interplay in relation to emotional and behavioral disturbance. Annual Review of Psychology, 53, 463490.CrossRefGoogle ScholarPubMed
Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Shumay, F., Chen, J., Fowler, J. S., & Volkow, N. D. (2011). Genotype and ancestry modulate brain's DAT availability in healthy humans. PLOS ONE, 6, e22754.Google Scholar
Sonuga-Barke, E., Oades, R. D., Psychogiou, L., Chen, W., Franke, B., Buitelaar, J., et al. (2009). Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed emotion: The case of conduct and emotional problems in attention deficit/hyperactivity disorder. Child Psychology and Psychiatry, 9, 10521063.Google Scholar
Spinrad, T. L., Eisenberg, N., Gaertner, B., Popp, T., Smith, C. L., Kupfer, A. et al. (2007). Relations of maternal socialization and toddlers' effortful control to children's adjustment and social competence. Developmental Psychology, 43, 11701186.Google Scholar
Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978989.Google Scholar
Tal, O. (2012). The impact of gene-environment interaction and correlation on the interpretation of heritability. Acta Biotheoretica, 60, 225237.CrossRefGoogle ScholarPubMed
Taylor, Z. E., Eisenberg, N., Spinrad, T. L., & Widaman, K. F. (2013). Longitudinal relations of intrusive parenting and effortful control to ego-resiliency during early childhood. Child Development, 84, 11451151.Google Scholar
Vandenbergh, D. J., Thompson, M. D., Cook, E. H., Bendahhou, E., Nguyen, T., Krasowski, M. D., et al. (2000). Human dopamine transporter gene: Coding region conservation among normal, Tourette's disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Molecular Psychiatry, 5, 283292.Google Scholar
van den Hoofdakker, B. J., Nauta, M. H., Dijck-Brouwer, D. A., van der Veen-Mulders, L., Sytema, S., Emmelkamp, P. M., et al. (2012). Dopamine transporter gene moderates response to behavioral parent training in children with ADHD: A pilot study. Developmental Psychology, 48, 567574.Google Scholar
Werts, C. E., Rock, D. R., Linn, R. L., & Jöreskog, K. G. (1978). A general method of estimating the reliability of a composite. Educational and Psychological Measurement, 38, 933938.Google Scholar
Wright, J. P., Schnupp, R., Beaver, K. M., Delisi, M., & Vaughn, M. (2012). Genes, maternal negativity, and self-control: Evidence of a gene x environment interaction. Youth Violence and Juvenile Justice, 10, 245260.CrossRefGoogle Scholar