Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T22:19:40.814Z Has data issue: false hasContentIssue false

Ordering and Phase Separation in Movpe Ingap Alloys and Unicompositional Quantum Wells

Published online by Cambridge University Press:  21 February 2011

David M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Richard P. Schneider Jr
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Eric D. Jones
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Get access

Abstract

The microstructures of In0.5Ga0.5P alloys grown on (100) GaAs by MOVPE have been characterized with cross-section TEM and their optical emission examined with photoluminescence at low temperatures. All the alloys exhibit spinodal-like decomposition with compositional modulations along directions in the growth plane. Alloys grown at 775 °C have the highest emission energy, 2.0 eV; growth at 675°C gave the lowest, 1.89 eV, due to strong CuPt-type ordering of In and Ga. The ordered domains are platelets 20 to 200 nm wide and 10-20 nm thick, with antiphase boundaries 1-2 nm apart. We have also formed "unicompositional" quantum wells of thin (1.3-20 nm) ordered layers grown at 675°C between disordered barriers grown at 750°C. Ordering is found only in the active layer, with domains similar to those of thick layers. The emission energy increases by 90 meV as the well thickness is decreased from 10 to 1.3 nm, thus demonstrating quantum size effects solely through disorder-order phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gomyo, A., Suzuki, T., Kawata, S., Hino, I. and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).Google Scholar
2 Schneider, R. P. Jr., Jones, E. D., Lott, J. A. and Bryan, R. P., J. Appl. Phys. 72, 5397 (1992).Google Scholar
3 Bellon, P., Chevalier, J. P., Martin, G. P., Dupont-Nivet, E., Thiebaut, C. and Andre', J. P., Appl. Phys. Lett. 52, 567 (1988).Google Scholar
4 Jones, E. D., Follstaedt, D. M., Lyo, S. K. and Schneider, R. P. Jr. in Semiconductor Heterostructures for Photonic and Electric Applications, edited by Tu, C. W., Houghton, D. C. and Tung, R. T. (Mater. Res. Soc. Symp. Proc. 281, Pittsburgh, PA, 1993) pp. 6166.Google Scholar
5 Bell, W. L. and Thomas, G., in Electron Microscopy and Structure of Materials, eds. Thomas, G., Fulrath, R. M. and Fisher, R. M. (Univ. Cal. Press, Berkeley, 1972) pp. 29 & 30.Google Scholar
6 Schneider, R. P. Jr., Jones, E. D. and Follstaedt, D. M., to be published.Google Scholar
7 Nozaki, C., Ohba, Y., Sugawara, H., Yasuami, S. and Nakanisi, T., J. Crystal Growth 93, 406 (1988).Google Scholar
8 Chen, G. S., Wang, T. Y. and Stringfellow, G. B., Appl. Phys. Lett. 56, 1464 (1990).Google Scholar
9 Biefeld, R. M., Baucom, K. C., Kurtz, S. R. and Follstaedt, D. M., J. Crystal Growth 133, 38 (1993).Google Scholar
10 McDevitt, T. L., Mahajan, S., Laughlin, D. E., Bonner, W. A. and Keramidas, V. G., Phys. Rev. B45, 6614 (1992).Google Scholar
11 Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Berkshire, England, 1983), pp. 308314.Google Scholar
12 Stringfellow, G. B., J. Appl. Phys. 54, 404 (1983).Google Scholar
13 Kurtz, S. R., Dawson, L. R., Biefeld, R. M., Follstaedt, D. M. and Doyle, B. L., Phys. Rev. B46, 1909 (1992).Google Scholar
14 Suzuki, T., Gomyo, A. and Iijima, S., J. Crystal Growth 93, 396 (1988).Google Scholar