Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T23:45:19.248Z Has data issue: false hasContentIssue false

Influence of Macro- and Nanotopography, Thin Film Thermomechanical Behavior and Process Parameters on the Stability of Thermocompression Bonding.

Published online by Cambridge University Press:  01 February 2011

Konstantinos Stamoulis
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
S. Mark Spearing
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. School of Engineering Sciences, University of Southampton, Southampton, United Kingdom.
Get access

Abstract

The quality of wafer-level, gold thermocompression bonds is critically dependent on the interaction between the wafer topography, the thin film properties, the process parameters and tooling used to achieve the bonds. This study presents mechanics modeling of the effect of wafer topography. An analytical expression for the strain energy release rate associated with the elastic deformation required to overcome wafer bow is developed. Furthermore, a simple contact yielding criterion is used to examine the pressure and temperature conditions required to flatten nano-scale asperities in order to achieve bonding over the full apparent area. The analytical results combined with experimental data for the interface bond toughness obtained from four-point bend testing indicate that the overall wafer shape is a negligible contributor to bond quality. A micro-scale bond characterization based on microscopic observations and AFM measurements show that the bond yield is increased with increasing bond pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsau, C. H., Spearing, S. M. and Schmidt, M. A., J. Microelectromech. Syst. 11(6), 641 (2002).Google Scholar
2. Tsau, C. H., Schmidt, M. A. and Spearing, S. M. in Materials Science of MEMS Devices II, (Mat. Res. Soc. Symp. Proc. 605, Pittsburgh, PA, 1999), 171176.Google Scholar
3. Tsau, C.H., Ph.D. Thesis, MIT 2002.Google Scholar
4. Turner, K. T. and Spearing, S. M., J. Appl. Phys. 92(12), 7658 (2002).Google Scholar
5. Turner, K. T., Thouless, M. D. and Spearing, S. M., J. Appl. Phys. 95(1), 349 (2004).Google Scholar
6. Hutchinson, J.W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).Google Scholar
7. Johnson, K. L., Contact Mechanics, (Cambridge Univ. Press, Cambridge, 1985).Google Scholar
8. Frost, H. J. and Ashby, M. F., Deformation mechanism maps, (Pergamon, 1982).Google Scholar
9. Tabor, D., Hardness of metals, (Clarendon Press, Oxford, 1951).Google Scholar
10. Hill, R., Mathematical theory of plasticity, (Oxford Univ. Press, Oxford, 1950).Google Scholar
11. Gampala, R., Elzey, D. M. and Wadley, H. N. G., Acta Metall. Mater. 42(9), 3209 (1994).Google Scholar
12. Freund, L.B. and Suresh, S., Thin Film Materials, (Cambridge Univ. Press, Cambridge, 2003).Google Scholar
13. Charalambides, P., Lund, J., Evans, A.G. and McMeeking, R.M., J. Appl. Mech. 56, 77 (1989)Google Scholar
14. Balk, T. J., Dehm, G. and Arzt, E. in Thin Films: Stresses and Mechanical Properties IX, (Mat. Res. Soc. Symp. Proc. 695, 2001), L.2.7.1–L.2.7.6.Google Scholar
15. Lane, M., Dauskardt, R. H., Vainchtein, A. and Gao, H., J. Mater. Res. 15(12), 2758 (2000).Google Scholar