Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T19:37:04.719Z Has data issue: false hasContentIssue false

The Quotient Problem for Entire Functions

Published online by Cambridge University Press:  26 October 2018

Ji Guo*
Affiliation:
Department of Mathematics, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan Email: s104021881@m104.nthu.edu.tw

Abstract

Let $\{\mathbf{F}(n)\}_{n\in \mathbb{N}}$ and $\{\mathbf{G}(n)\}_{n\in \mathbb{N}}$ be linear recurrence sequences. It is a well-known Diophantine problem to determine the finiteness of the set ${\mathcal{N}}$ of natural numbers such that their ratio $\mathbf{F}(n)/\mathbf{G}(n)$ is an integer. In this paper we study an analogue of such a divisibility problem in the complex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire functions) for two sequences $F(n)=a_{0}+a_{1}f_{1}^{n}+\cdots +a_{l}f_{l}^{n}$ and $G(n)=b_{0}+b_{1}g_{1}^{n}+\cdots +b_{m}g_{m}^{n}$, where the $f_{i}$ and $g_{j}$ are nonconstant entire functions and the $a_{i}$ and $b_{j}$ are non-zero constants except that $a_{0}$ can be zero. We will show that the set ${\mathcal{N}}$ of natural numbers such that $F(n)/G(n)$ is an entire function is finite under the assumption that $f_{1}^{i_{1}}\cdots f_{l}^{i_{l}}g_{1}^{j_{1}}\cdots g_{m}^{j_{m}}$ is not constant for any non-trivial index set $(i_{1},\ldots ,i_{l},j_{1},\ldots ,j_{m})\in \mathbb{Z}^{l+m}$.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borel, E., Sur les zéros des fonctions entières . Acta math. 20(1897), no. 1, 357396. https://doi.org/10.1007/BF02418037.Google Scholar
Corvaja, P. and Zannier, U., Finiteness of integral values for the ratio of two linear recurrences . Invent. math. 149(2002), no. 2, 431451. https://doi.org/10.1007/s002220200221.Google Scholar
Green, M., Some Picard theorems for holomorphic maps to algebraic varieties . Amer. J. Math. 97(1975), no. 1, 4375. https://doi.org/10.2307/2373660.Google Scholar
Guo, J. and Wang, J.T.-Y., Asymptotic gcd and divisible sequences for entire functions . Trans. Amer. Math. Soc., to appear.Google Scholar
Lang, S., Introduction to complex hyperbolic spaces . Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4757-1945-1.Google Scholar
Pasten, H. and Wang, J.T.-Y., GCD Bounds for analytic functions . Int. Math. Res. Not. IMRN (2017), no. 1, 4795. https://doi.org/10.1093/imrn/rnw028.Google Scholar
van der Poorten, A. J., Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles . C. R. Acad. Sci. Paris 302(1988), 97102.Google Scholar
Ru, M., Nevanlinna theory and its relation to Diophantine approximation . World Scientific, Publishing Co., Inc., River Edge, NJ, 2001. https://doi.org/10.1142/9789812810519.Google Scholar
Rumely, R., Notes on van der Poorten’s proof of the Hadamard quotient theorem . In: Séminaire de Théorie des Nombres, Paris 1986–87 , Progr. Math., 75, Birkhäuser Boston, Boston, MA, 1988, pp. 349409.Google Scholar
Vojta, P., On Cartan’s theorem and Cartan’s conjecture . Amer. J. Math. 119(1997), no. 1, 117.Google Scholar
Vojta, P., Diophantine approximation and Nevanlinna theory . In: Arithmetic geometry , Lecture Notes in Mathematics, 2009, Springer-Verlag, Berlin, 2011, pp. 111224. https://doi.org/10.1007/978-3-642-15945-9_3.Google Scholar
Zannier, U., Diophantine equations with linear recurrences. An overview of some recent progress . J. Théor. Nombres Bordeaux 17(2005), 423435.Google Scholar