Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T05:55:09.293Z Has data issue: false hasContentIssue false

Tetraphenylmethane-Based 1,3,4-Oxadiazole as Electron Transporting Materials in Organic Light-Emitting Devices

Published online by Cambridge University Press:  21 March 2011

Chin-Ti Chen
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, cchen@chem.sinica.edu.tw
Tzu-Yao J. Lin
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Hsiu-Chih Yeh
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Li-Hsin Jan
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Easwaramoorthy Balasubramaniam
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Get access

Abstract

A series of tetrahedral tetramers of 2,5-diphenyl substituted 1,3,4-oxadiazole compounds were synthesized and characterized for electron-transporting layer (ETL) in organic light-emitting diode (OLED). The multiple-branch design of the oxadiazole tetramers intends to increase the melting temperature and to generate glass phase of the low molar mass derivative such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD). We observed temperatures of the glass phase transition for the oxadiazole tetramer with appropriate peripheral substituents, indicative of amorphous characteristics of the molecule in spite of highly symmetrical molecular framework. The luminescence-current-voltage characteristics of multilayer OLED devices containing the oxadiazole tetramer or PBD as ETL were examined to evaluate the efficiency of our multiple-branch molecular design.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987)Google Scholar
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature, 347, 539 (1990).Google Scholar
3. Clery, D., Science, 263, 1701 (1994).Google Scholar
4. Strite, T. and Riess, W., Compound Semiconductor, 3 (Nov/Dec), 34 (1997).Google Scholar
5. Sheats, J. R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D. and Stocking, A., Science, 273, 884 (1996).Google Scholar
6. Organic Electroluminescent Materials and Devices, edited by. Miyata, S. and Nalwa, H. S., (Gordon and Breach: New York 1996).Google Scholar
7. Jüstel, T., Nikol, H. and Ronda, C., Angew. Chem., Int. Ed., 37, 3084 (1998).Google Scholar
8. Kraft, A., Grimsdale, A. C. and Holmes, A. B., Angew. Chem., Int. Ed., 37, 402 (1998).Google Scholar
9. Alivisatos, A. P., Barbara, P. F., Castleman, W. A., Chang, J., Dixon, D. A., M. L Klein,. McLendon, G. L., Miller, J. S., Ratner, M. A., Rossky, P. J., Stupp, S. I. and Thompson, M. E, Adv. Mater., 10, 1297 (1998).Google Scholar
10. Kuwayama, Y., Ogawa, H., Inada, H., Noma, N. and Shirota, Y., Adv. Mater., 6, 677 (1994).Google Scholar
11. Tanaka, H., Tolito, S., Taga, Y. and Okada, A., Chem. Commun., 2175 (1996).Google Scholar
12. Thelakkat, M. and Schmidt, H.-W., Adv. Mater., 10, 219 (1998).Google Scholar
13. Katsuma, K., and Shirota, Y., Adv. Mater., 10, 223 (1998).Google Scholar
14. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett., 55, 1489 (1989).Google Scholar
15. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett., 56, 799 (1990).Google Scholar
16. Brown, A. R., Bradley, D. D. C., Burroughes, J. H., Friend, R. H., Greenham, N. C., Burn, P. L., Holmes, A. B. and Kraft, A., Appl. Phys. Lett., 61, 2793 (1992).Google Scholar
17. Schmidt, A., Anderson, M. L. and Armstrong, N. R., J. Appl. Phys., 78, 5619 (1995).Google Scholar
18. Salbeck, J., Yu, N., Bauer, J., Weissörtel, F. and Bestgen, H., Synth. Metals, 91, 209 (1997).Google Scholar
19. Johansson, N., Santos, D. A. dos, Guo, S., Cornil, J., Fahlman, M., Salbeck, J., Schenk, H., Arwin, H., Brédas, J. L., and Salanek, W. R,. J. Chem. Phys., 107, 2542 (1997).Google Scholar
20. Bettenhausen, J. and Strohriegl, P., Adv. Mater., 8, 507 (1996).Google Scholar
21. Bettenhausen, J., Strohriegl, P., Bruttimg, W., Tokuhisa, H. and Tsutsui, T., J. Appl. Phys., 82, 4959 (1997).Google Scholar
22. Tamoto, N., Adachi, C., and Nagai, K., Chem. Mater., 9, 1077 (1997).Google Scholar
23. Detert, H., and Schollmeier, D., Synthesis, 999 (1999).Google Scholar
24. Hartingsveldt, W. Van, Verkade, P. E. and Wepster, B. M., Recl. Trav. Chim. Pay-Bas, 75, 349 (1956).Google Scholar
25. Kieste, B., Grimm, M., and Kurreck, H., J. Am. Chem. Soc., 111, 108 (1989).Google Scholar