Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T20:38:00.126Z Has data issue: false hasContentIssue false

Ultra High Energy Cosmic Rays from Engine-driven Relativistic Supernovae

Published online by Cambridge University Press:  05 September 2012

Sayan Chakraborti*
Affiliation:
Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, India email: sayan@tifr.res.in
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sources of the highest energy cosmic rays remain an enigma half a century after their discovery. Understanding their origin is a crucial step in probing new physics at energies unattainable by terrestrial accelerators. They must be accelerated in the local universe as otherwise interaction with cosmic background radiations would severely deplete the flux of protons and nuclei at energies above the Greisen-Zatsepin-Kuzmin (GZK) limit. Hypernovae, nearby GRBs, AGNs and their flares have all been suggested and debated in the literature as possible sources. Type Ibc supernovae have a local sub-population with mildly relativistic ejecta which are known to be sub-energetic GRBs or X-Ray Flashes for sometime and more recently as those with radio afterglows but without detected GRB counterparts, such as SN 2009bb. In this talk we present the size-magnetic field evolution, baryon loading and energetics of SN 2009bb using its radio spectra obtained with VLA and GMRT. We show that the engine-driven SNe lie above the Hillas line and they can explain the characteristics of post-GZK UHECRs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bhabha, H. J. & Heitler, W. 1937, Royal Society of London Proceedings Series A, 159, 432Google Scholar
Budnik, R., Katz, B., MacFadyen, A., & Waxman, E. 2008, ApJ, 673, 928CrossRefGoogle Scholar
Chakraborti, S., et al. 2010, Nature Communications, 2, 175CrossRefGoogle Scholar
Chandra, P., Ray, A., & Bhatnagar, S. 2004, ApJ, 612, 974CrossRefGoogle Scholar
Chevalier, R. A. 1998, ApJ, 499, 810CrossRefGoogle Scholar
Coleman, S. & Glashow, S. L. 1999, Phys. Rev. D, 59, 116008CrossRefGoogle Scholar
Farrar, G. R. & Gruzinov, A. 2009, ApJ, 693, 329CrossRefGoogle Scholar
Greisen, K. 1966, Phys. Rev. Lett., 16, 748CrossRefGoogle Scholar
Hillas, A. M. 1966, ARAA, 22, 425CrossRefGoogle Scholar
Horiuchi, S., Murase, K., Ioka, K., & Meszaros, P. 2012, ArXiv e-prints, astro-ph.HE:1203.0296Google Scholar
Kashti, T. & Waxman, E. 2008, Journal of Cosmology and Astro-Particle Physics, 5, 6CrossRefGoogle Scholar
Linsley, J. 1963, Phys. Rev. Lett., 10, 146CrossRefGoogle Scholar
Milgrom, M. & Usov, V. 1995, Ap. Lett., 449, 37CrossRefGoogle Scholar
Murase, K., Ioka, K., Nagataki, S., & Nakamura, T. 2006, Ap. Lett., 651, 5CrossRefGoogle Scholar
Soderberg, A. M., Kulkarni, S. R., Nakar, E., et al. 2006, Nature, 442, 1014CrossRefGoogle Scholar
Soderberg, A. M., Chakraborti, S., Pignata, G., et al. 2010, Nature, 463, 513CrossRefGoogle Scholar
The High Resolution Fly'S Eye Collaboration 2008, Phys. Rev. Lett., 100, 101101CrossRefGoogle Scholar
The Pierre Auger Collaboration 2007, Science, 318, 938CrossRefGoogle Scholar
The Pierre Auger Collaboration 2010, Phys. Rev. Lett., 104, 091101CrossRefGoogle Scholar
Wang, X.-Y., Razzaque, S., Mészáros, P., & Dai, Z.-G. 2007, Phys. Rev. D, 76, 083009CrossRefGoogle Scholar
Waxman, E. 1995, Phys. Rev. Lett., 75, 386CrossRefGoogle Scholar
Waxman, E. & Loeb, A. 2009, Journal of Cosmology and Astro-Particle Physics, 8, 26CrossRefGoogle Scholar
Zatsepin, G. T. & Kuz'min, V. A. 1966, Soviet Journal of Experimental and Theoretical Physics Letters, 4, 78Google Scholar