Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T09:44:44.708Z Has data issue: false hasContentIssue false

Soft X-Rays for Deep Sub-100 Nm Lithography, with and Without Masks

Published online by Cambridge University Press:  10 February 2011

Henry I. Smith
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
D. J. D. Carter
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
J. Ferrera
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
D. Gil
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
J. Goodberlet
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
J. T. Hastings
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
M. H. Lim
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
M. Meinhold
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
R. Menon
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
E. E. Moon
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
C. A. Ross
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
T. Savas
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
M. Walsh
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
F. Zhang
Affiliation:
Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Get access

Abstract

The development of micro- and nanofabrication, their applications, and their dependent industries has progressed to a point where a bifurcation of technology development will likely occur. On the one hand, the semiconductor industry (at least in the USA) has decided to develop EUV and SCALPEL to meet its future needs. Even if the semiconductor industry is successful in this (which is by no means certain) such tools will not be useful in most other segments of industry and research that will employ nanolithography. As examples, MEMS, integrated optics, biological research, magnetic information storage, quantum-effect research, and multiple applications not yet envisioned will not employ the lithography tools of the semiconductor industry, either because they are too expensive, insufficiently flexible, or lacking in accuracy and spatial-phase coherence. Of course, direct-write electron-beam lithography can meet many of these non-semiconductor-industry needs, but in other cases a technique of higher throughput or broader process-latitude is necessary. Our experience at MIT in applying low-cost proximity x-ray nanolithography to a wide variety of applications leads us to conclude that this technology can provide an alternative path of a bifurcation. A new projection lithography technique, zone-plate-array lithography (ZPAL), does not require a mask, can operate from UV to EUV to x-rays, and has the potential to reach the limits of the lithographic process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Spears, D. L. and Smith, H. I., Electronics Lett. 8, 102 (1972).Google Scholar
2Smith, H. I., Spears, D. L., and Bernacki, S. E., J. Vac. Sci. Technol. 10, 913 (1973).Google Scholar
3Bernacki, S. E. and Smith, H. I., IEEE Trans. Elec. Dev. ED22, 421 (1975).Google Scholar
4Silverman, J. P., J. Vac. Sci. Technol. B 15, 2177 (1997); Silverman, J. P., A White Paper for the 1998 Sematech Next Generation lithography Workshop.Google Scholar
5Ismail, K., Chu, W., Yen, A., Antoniadis, D.A. and Smith, H.I., Appl. Phys. Lett. 54, 460 (1989).Google Scholar
6Yang, I.Y., Silverman, S., Ferrera, J., Jackson, K., Carter, J.M., Antoniadis, D.A., and Smith, H.I., J. Vac. Sci. Technol. B 13, 2741– (1995).Google Scholar
7Lim, M. H., Murphy, T. E., Ferrera, J., Damask, J. N. and Smith, H. I., J. Vac. Sci. Technol. B 15 Nov/Dec. (1999).Google Scholar
8Foresi, J.S., Villeneuve, P.R., Ferrera, J., Thoen, E.R., Steinmeyer, G., Fan, S., Joannopoulos, J.D., Kimerling, L.C., Smith, H.I., Ippen, E.P., Nature, 390, 143–, (1997).Google Scholar
9Smith, H.I., Schattenburg, M.L., Hector, S.D., Ferrera, J., Moon, E.E., Yang, I.Y., and Burkhardt, M., Microelectronic Engineering 32, 143– (1996).Google Scholar
10Seizer, R., Heaton, J., Dandekar, N., Micro and Nano Engineering Conference, Rome, September, 1999, these proceedings.Google Scholar
11Smith, H. I., J. Vac, Sci. Technol. B 14, 4318 (1996).Google Scholar
12Djomehri, I., Savas, T. and Smith, H. I., J. Vac. Sci. Technol. B 16, 3426 (1998).Google Scholar
13Carter, D. J. D., Gil, D., Menon, R., Mondol, M. and Smith, H. I., J. Vac. Sci. Technol. B Nov/Dec. (1999).Google Scholar
14Subbana, S. et al., IEDM Tech. Digest, 695 (1994).Google Scholar
15DellaGuardia, R. et al., Proc. SPIE 2437, 112 (1995).Google Scholar
16Nishioka, Y. et al., IEDM Tech. Digest, 903 (1995).Google Scholar
17Wind, S. J. et al., J. Vac. Sci. Technol. B 13, 2688 (1995).Google Scholar
18Sunouchi, K. et al., IEDM Tech. Digest, 601 (1996).Google Scholar
19Ferrera, J., Schattenburg, M. L. and Smith, H. I., J. Vac. Sci. Technol. B 14 4009 (1996)Google Scholar
20Schattenburg, M. L., Chen, C., Everett, P. N., Ferrera, J., Konkola, P. and Smith, H. I., J. Vac. Sci. Technol. B Nov/Dec. (1999).Google Scholar
21Goodberlet, J., Carter, J. and Smith, H. I., J. Vac. Sci. Technol. B 16, 3672 (1998).Google Scholar
22Ferrera, J., Wong, V. V., Rishton, S., Boegli, V., Anderson, E. H., Kern, D. P. and Smith, H. I., J. Vac. Sci. Technol. B 11, 2342 (1993).Google Scholar
23Ross, C. A., Hwang, M., Smith, H. I., Farhoud, M., Abraham, M. C., Ram, R. J., Savas, T., Schatenburg, M., J. Vac. Sci. Technol. B, Nov/Dec (1999).Google Scholar
24Savas, T.A., Farhoud, M., Smith, H. I., Hwang, M., and Ross, C.A., J. Appl. Physics, 85, 6160– (1999).Google Scholar
25Smith, H.I., Schattenburg, M.L., IBM J. Res. & Develop. 37 319 (1993).Google Scholar
26Carter, D. J. D., Pepin, A., Schweizer, M. R. and Smith, H. I., J. Vac. Sci. Technol. B, 15, (1997) 2509; D.J.D. Carter, Ph.D. Thesis MIT (1998).Google Scholar
27Smith, H. I. and Cerrina, F., Microlithography World 6, 10 (1997).Google Scholar
28Moon, E., Lee, J., Everett, P. and Smith, H. I., J. Vac. Sci. Technol. B 16, 3631 (1998).Google Scholar
29Ferrera, J., Ph. D. Thesis, MIT (1999).Google Scholar
30Tsuboi, S., Kotsuji, S., Yoshihara, T. and Suzuki, K., J. Vac. Sci, Technol. B 15 (6), 2228 (1997).Google Scholar
31Feldman, M. and Lee, J. B., J. Vac. Sci. Technol. B Nov/Dec (1999).Google Scholar
32Lim, M. H., Ferrera, J., Pipe, K. P. and Smith, H. I., J. Vac. Sci. Technol. B Nov/Dec. (1999).Google Scholar
33Rehbein, S., Doak, R. D., Grisenti, R. E., Schmahl, G., Toennies, J. P. and Woll, Ch., Micro and Nano Engineering Conference, Rome, September, 1999.Google Scholar
34Schmahl, G., Rudolph, D., Niemann, B., Guttman, P., Thieme, J., Schneider, G., David, C., Diehl, M., and Wilhein, T., Optik 93, (1993) 95; Proceedings, Sixth International Conference on X-ray Microscopy (XRM'99), Aug. 1–6, 1999, Berkeley, CA, USA Ed. D. Atwood.Google Scholar
35Smith, H. I. and Flanders, D. C., J. Vac. Sci. Technol. 17, 533 (1980).Google Scholar
36Peuker, M., Micro and Nano Engineering Conference, Rome, September, 1999.Google Scholar
37Anderson, E. H., Harteneck, B., Olynick, D., Proceedings, Sixth International Conference on X-ray Microscopy (XRM'99), Aug. 1–6, 1999, Berkeley, CA, USA Ed. D. Atwood.Google Scholar