Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T14:04:42.432Z Has data issue: false hasContentIssue false

Early Prehistoric Maize in Northern Highland Ecuador

Published online by Cambridge University Press:  20 January 2017

J. Stephen Athens*
Affiliation:
International Archaeological Research Institute, Inc., 2081 Young St., Honolulu, HI 96826
Jerome V. Ward
Affiliation:
(wardjer@gmail.com)
Deborah M. Pearsall
Affiliation:
Department of Anthropology, University of Missouri-Columbia, Columbia, MO 65211 (pearsalld@missouri.edu)
Karol Chandler-Ezell
Affiliation:
Department of Anthropology, Geography, & Sociology, Stephen F. Austin State University, Nacogdoches, TX 75962 (kchandlerezell@sfasu.edu)
Dean W. Blinn
Affiliation:
Regents' Professor Emeritus, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001 (deandiacad@comcast.net)
Alex E. Morrison
Affiliation:
International Archaeological Research Institute, Inc., 2081 Young St., Honolulu, HI 96826 (amorrison@iarii.org)
*
Corresponding author: jsathens@iarii.org

Abstract

The discovery of the fully developed Formative sites of Cotocallao (ca. 3750-2350 cal. B.P.) in the Quito Basin and La Chimba (ca. 2650-1700 cal. B.P.) in the northern highlands of Ecuador has raised questions about their cultural antecedents, which have not been resolved despite decades of archaeological work in the region. Paleoenvironmental coring investigations were conducted at Lake San Pablo in northern highland Ecuador to determine the date for the onset of prehistoric maize farming in the temperate highland valleys of this region. The investigations included analysis of lake sediments for pollen, phytoliths, diatoms, and tephra. Maize pollen was identified as early as 4900 cal. B.P., while maize phytoliths dated even earlier, to 6200 or 6600 cal. B.P. These results demonstrate a long history of maize farming in valleys around Lake San Pablo, but in the context of a punctuated record of major and minor volcanic eruptions. It is concluded that early horticultural sites predating Cotocallao and La Chimba must exist, but to find such sites, archaeologists will have to locate and study deeply buried A-horizon soils.

Resumen

Resumen

El descubrimiento en la sierra del Ecuador de sitios completamente desarrollados del periodo Formativo como Cotocollao (aproximadamente 3750 a 2350 cal. a.P.) y La Chimba (aproximadamente 2650 a 1700 cal. a.P.) en el valle de Quito y en la sierra norte, respectivamente, ha generado preguntas acerca de sus antecedentes culturales. Estas no han sido sin resueltas, aun con décadas de trabajos arqueolόgicos efectuados en la regiόn. Se realizaron,por lo tanto, investigaciones paleoambientales en el Lago San Pablo de la sierra norte del Ecuador, mediante la extracciόn de niicleos de sedimentos, para determinar en quefechas se inicio el cultivo prehistόrico del maiz en los templados valles de esta region. Las investigaciones de sedimentos incluyeron el análisis de polen, defitolitos, de diatomeas y de tefra. Se pudo identificar polen antiguo de maiz en contextos fechados en 4900 cal. a.P., mientras que los fitoUtos de la mismaplanta se ubican enfechas más antiguas cercanas al 6200 o 6600 cal. a.P. Estos resultados demuestran una larga historia del cultivo de maίz en los valles que rodean al Lago San Pablo, aunque en el contexto de un registro espordáico de erupciones volcánicas de mayor y menor escala. Se concluye que deben existir sitios hortίcolas que preceden a Cotocollao yaLa Chimba. Para hallar tales sitios, los arqueόlogos tendrán que buscar e investigar horizontes A profundamente enterrados.

Type
Articles
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Aceituno, Francisco Javier, and Lalinde, Verónica 2011 Residuos de almidones y el uso de plantas durante el Holoceno medio en el Cauca Medio (Colombia). Caldasia 33:120.Google Scholar
Aceituno, Francisco Javier, and Loaiza, Nicolás 2014 Early and Middle Holocene Evidence for Plant Use and Cultivation in the Middle Cauca River Basin, Cordillera Central (Colombia). Quaternary Science Reviews 86:4962.Google Scholar
Athens, J. Stephen 1990 Prehistoric Agricultural Expansion and Population Growth in Northern Highland Ecuador: Interim Report for 1989 Fieldwork. Report prepared for the Instituto Nacional de Patrimonio Cultural, Quito. International Archaeological Research Institute, Inc., Honolulu Electronic document: http://www.iarii.org/download.html.Google Scholar
Athens, J. Stephen 1995 Relaciones interregionales prehistóricas en el none de los Andes: evidencia del sitio La Chimba, en el Ecuador septentrional. In Perspectivas Regionales en La Arqueologia del Suroccidente de Colombia y Norte del Ecuador, edited by Cristóbal Gnecco, pp. 329. Editorial Universidad del Cauca, Popayán. Google Scholar
Athens, J. Stephen 1999 Volcanism and Archaeology in the Northern Highlands of Ecuador. In Actividad Volcánica y Pueblos Precolombinos en el Ecuador, edited by Patricia Mothes, pp. 157189. Ediciones Abya-Yala, Quito. Google Scholar
Athens, J. Stephen, Ward, Jerome V., Pearsall, Deborah M., Chandler-Ezell, Karol, Blinn, Dean W., and Morrison, Alex E. 2015 Prehistoric Maize in the Northern Andes: Coring In vestigations at Lake San Pablo, Ecuador. National Science Foundation Final Project Report, Award BCS-0211168. International Archaeological Research Institute, Inc., Honolulu. Electronic document, http://www.iarii.org/download.html, accessed January 22, 2016.Google Scholar
Blaauw, Maarten 2010 Methods and Code for “Classical” Age-Modeling of Radiocarbon Sequences. Quaternary Geochronology 5(5):512518.Google Scholar
Bradbury, J. Piatt, and Dieterich-Rurup, Kathryn V. 1993 Holocene Diatom Paleolimnology of Elk Lake, Minnesota. In Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States, edited by J.P. Bradbury and W.E. Dean, pp. 215237. Geological Society of America Special Paper 276. Boulder, Colorado. CrossRefGoogle Scholar
Byrne, Roger, and Horn, Sally P. 1989 Prehistoric Agriculture and Forest Clearance in the Sierra de Los Tuxtlas, Veracruz, Mexico. Palynology 13:181193.CrossRefGoogle Scholar
Colinvaux, Paul A., De Oliveira, Paulo E., and Patiño, Jorge Enrique Moreno 1999 Amazon Pollen Manual and Atlas. Harwood Academic Publishers (Gordon and Breach), Amsterdam.Google Scholar
Culotta, Elizabeth 1991 How Many Genes Had to Change to Produce Corn? Science 252:17921793.CrossRefGoogle ScholarPubMed
Deevey, Edward S. Jr., Gross, Marsha S., Hutchinson, George E., and Kraybill, Henry L. 1954 The Natural 14C Contents of Materials from Hardwater Lakes. Proceedings of the National Academy of Sciences 40:285288.CrossRefGoogle Scholar
Dickau, Ruth, Aceituno, Francisco Javier, Loaiza, Nicolás, López, Carlos, Cano, Martha, Herrera, Leonor, Restrepo, Carlos, and Ranere, Anthony J. 2015 Radiocarbon Chronology of Terminal Pleistocene to Middle Holocene Human Occupation in the Middle Cauca Valley, Colombia. Quaternary International 363:4354.Google Scholar
Doebley, John F. 2004 The Genetics of Maize Evolution. Annual Review of Genetics 38:3759.Google Scholar
Grimm, Eric C. 1987 CONISS: A FORTRAN 77 Program for Stratigraph-ically Constrained Cluster Analysis by the Method of Incremental Sum of Squares. Computers & Geosciences 13(1):1335.Google Scholar
Grobman, Alexander, Bonavia, Duccio, Dillehay, Tom D., Piperno, Dolores R., Iriarte, José, and Hoist, Irene 2012 Preceramic Maize from Paredones and Huaca Prieta, Peru. Proceedings of the National Academy of Sciences 109(5):17551759.CrossRefGoogle ScholarPubMed
Hall, Minard L., and Mothes, Patricia A. 1994 Tefroestratigrafía Holocénica de los volcanes principales del valle interandino, Ecuador. In El Contexto Geológico del Espacio Físico Ecuatoriano: Neotectónica, Geodinámica, Volcanismo, Cuencas Sedimentarias, Riesgo Sísmico, edited by René Marocco, pp. 4767. Estudios de Geografía 6, Corporación Editora Nacional and Colegio de Geógrafos del Ecuador, Quito. Google Scholar
Hall, Minard L., and Mothes, Patricia A. 1999 La actividad volcánica del Holoceno en el Ecuador y Colombia austral: impedimento al desarrollo de las civi-lizaciones pasadas. In Actividad Volcánica y Pueblos Precolombinos en el Ecuador, edited by Patricia Mothes, pp. 1140. Ediciones Abya-Yala, Quito. Google Scholar
Hall, Minard L., and Mothes, Patricia A. 2008 Volcanic Impediments in the Progressive Development of Pre-Columbian Civilizations in the Ecuadorian Andes. Journal of Volcanology and Geothermal Research 176:344355.Google Scholar
Haas, Jonathan, Creamer, Winifred, Mes#x00ED;a, Luis Huamán, Goldstein, David, Reinhard, Karl, and Rodríguez, Cindy Vergel 2013 Evidence for Maize (Zea mays) in the Late Archaic (3000–1800 B.C.) in the Norte Chico Region of Peru. Proceedings of the National Academy of Sciences 110(13):49454949.Google Scholar
Hogg, Alan G., Hua, Quan, Blackwell, Paul G., Niu, Mu, Buck, Caitline E., Guilderson, Thomas P., Heaton, Timothy J., Paolmer, Johathan G., Reimer, Paula J., Reimer, Ron W., Turney, Christian S. M., and Zimmerman, Susan R. H. 2013 SHCall3 Southern Hemisphere Calibration,0–50,000 Years Cal BP. Radiocarbon 55(4): 18891903.Google Scholar
Hoist, Irene, Enrique Moreno, J., and Piperno, Dolores R. 2007 Identification of Teosinte, Maize, and Tripsacum in Mesoamerica by Using Pollen, Starch Grains, and Phytoliths. Proceedings of the National Academy of Sciences 104(45): 1760817613.Google Scholar
Ilitis, Hugh H. 2006 Origin of Polystichy in Maize. In Histories of Maize: Multidisciplinary Approaches to the Prehistory, Linguistics, Biogeography, Domestication, and Evolution of Maize, edited by John E. Staller, Robert H. Tykot, and Bruce F. Benz, pp. 2153. Elsevier, Burlington, Massachusetts. Google Scholar
Isaacson, John S. and Zeidler, James A. 1999 Accidental History: Volcanic Activity and the End of the Formative in Northwestern Ecuador. In Actividad Volcánica y Pueblos Precolombinos en el Ecuador, edited by Patricia Mothes, pp. 4172. Ediciones Abya-Yala, Quito. Google Scholar
Knapp, Gregory 1988 Ecología culturalprehispánica del Ecuador. Biblioteca de Geografía Ecuatoriana 3. Centra de Investigación y Cultura, Banco Central del Ecuador, Quito.Google Scholar
Lane, Chad S., Cummings, Katherine E., and Clark, Jeffrey J. 2010 Maize Pollen Deposition in Modern Lake Sediments: A Case Study from Northeastern Wisconsin. Review of Palaeobotany and Palynology 159:177187.Google Scholar
Lathrap, Donald W., Collier, Donald, and Chandra, Helen 1975 Ancient Ecuador: Culture, Clay and Creativity 3000–300 B.C. Field Museum of Natural History, Chicago.Google Scholar
Le Pennec, Jean-Luc, Ruiz, A. G., Eissen, Jean-Philippe, Hall, M. L., and Fornari, M. 2011 Identifying Potentially Active Volcanoes in the Andes: Radiometric Evidence for Late Pleistocene-Early Holocene Eruptions at Volcan Imbabura, Ecuador. Journal of Volcanology and Geothermal Research 206:121135.Google Scholar
Logan, Amanda L. 2006 Application of Phytolith and Starch Grain Analysis to Understanding Formative Period Subsistence, Ritual, and Trade on the Taraco Peninsula, Highland Bolivia. Unpublished Master's thesis, Department of Anthropology, University of Missouri-Columbia.Google Scholar
Logan, Amanda L., Hastorf, Christine A., Pearsall, Deborah M. 2012 “Let's Drink Together:” Early Ceremonial Use of Maize in the Titicaca Basin. Latin American Antiquity 23(3):235258.Google Scholar
MacDonald, Glen M., Beukens, Roelf P., and Kieser, W. E. 1991 Radiocarbon Dating of Limnic Sediments: A Comparative Analysis and Discussion. Ecology 72(3):11501155.Google Scholar
Matsuoka, Yoshihiro, Vigouroux, Yves, Goodman, Major M., Jesus Sanchez, G., Buckler, Edward, and Doebley, John 2002 A Single Domestication for Maize Shown by Multilocus Microsatellite Genotyping. Proceedings of the National Academy of Sciences 99(9):60806084.Google Scholar
Pagán-Jiménez, Jaime R., Guachamín-Tello, Ana M., Romero-Bastidas, Martha E., and Constantine-Castro, Angelo R. 2015 Late Ninth Millennium B.P. Use of Zea mays L. at Cubilan Area, Highland Ecuador, Revealed by Ancient Starches. Quaternary International (in press), http://dx.doi.Org/10.1016/j.quaint.2015.08.025.Google Scholar
Paterniani, Ernesto, and Stout, A.C. 1974 Effective Maize Pollen Dispersal in the Field. Euphytica 23:129134.CrossRefGoogle Scholar
Patrick, Ruth, and Reimer, Charles W. 1966 The Diatoms of the United States Exclusive of Alaska and Hawaii. Vol. 1, Academy of Natural Sciences of Philadelphia.Google Scholar
Pearsall, Deborah M. 2000 Paleoethnobotany: A Handbook of Procedures. Second Edition. Academic Press, San Diego.Google Scholar
Pearsall, Deborah M. 2002 Maize is Still Ancient in Prehistoric Ecuador: The View from Real Alto, with Comments on Staller and Thompson. Journal of Archaeological Science 29:5155.Google Scholar
Pearsall, Deborah M. 2003 Plant Food Resources of the Ecuadorian Formative: An Overview and Comparison to the Central Andes. In Archaeology of Formative Ecuador. A Symposium at Dumbarton Oaks, 7 and 8 October 1995, edited by J. Scott Raymond and Richard L. Burger, pp. 213257. Dumbarton Oaks Research Library and Collection, Washington, D.C. Google Scholar
Pearsall, Deborah M., Chandler-Ezell, Karol, and Chandler-Ezell, Alex 2003 Identifying Maize in Neotropical Sediments and Soils Using Cob Phytoliths. Journal of Archaeological Science 30:611627.Google Scholar
Pearsall, Deborah M., and Piperno, Dolores R. 1990 Antiquity of Maize Cultivation in Ecuador: Summary and Reevaluation of the Evidence. American Antiquity 55(2):324337.CrossRefGoogle Scholar
Piperno, Dolores R. 1990 Aboriginal Agriculture and Land Usage in the Amazon Basin, Ecuador. Journal of Archaeological Science 17:665677.CrossRefGoogle Scholar
Piperno, Dolores R. 2011 The Origins of Plant Cultivation and Domestication in the New World Tropics: Patterns, Process, and New Developments. Current Anthropology 52 (Supplement 4):S453S470.Google Scholar
Piperno, Dolores R., and Flannery, Kent V. 2001 The Earliest Archaeological Maize (Zea mays L.) from Highland Mexico: New Accelerator Mass Spectrometry Dates and Their Implications. Proceedings of the National Academy of Sciences 98(4):21012103.CrossRefGoogle ScholarPubMed
Piperno, Dolores R., Ranere, Anthony J., Hoist, Irene, Iriarte, Jose, and Dickau, Ruth 2009 Starch Grain and Phytolith Evidence for Early Ninth Millennium B.P. Maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences 106(13):50195024.Google Scholar
Piperno, Dolores R., Hoist, Irene, Winter, Klaus, and McMillan, Owen 2015 Teosinte Before Domestication: Experimental Study of Growth and Phenotypic Variability in Late Pleistocene and Early Holocene Environments. Quaternary International 363:6577.Google Scholar
Piperno, Dolores R, Enrique Moreno, J., Iriarte, José, Hoist, Irene, Lachniet, Matthew, Jones, John G., Ranere, Anthony J., and Castanzo, Ronald 2007 Late Pleistocene and Holocene Environmental History of the Iguala Valley, Central Balsas Watershed of Mexico. Proceedings of the National Academy of Sciences 104(29):1187411881.Google Scholar
Piperno, Dolores R., and Pearsall, Deborah M. 1998 The Origins of Agriculture in the Lowland Neotropics. Academic Press, New York.Google Scholar
Pleasants, John M., Heimlich, Richard L., Dively, Galen P., Sears, Mark K., Stanley-Horn, Diane E., Mattila, Heather R., Foster, John E., Clark, Peter, and Jones, Gretchen D. 2001 Corn Pollen Deposition on Milkweeds in and near Cornfields. Proceedings of the National Academy of Sciences 98(21): 11,91911,924.Google Scholar
Ranere, Anthony J., Piperno, Dolores R., Hoist, Irene, Dickau, Ruth, and Iriarte, José 2009 The Cultural and Chronological Context of Early Holocene Maize and Squash Domestication in the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences 106(13):50145018.Google Scholar
Raynor, Gilbert S., Ogden, Eugene C., and Hayes, Janet V. 1972 Dispersion and Deposition of Corn Pollen from Experimental Sources. Agronomy Journal 64:420427.Google Scholar
Reichel-Dolmatoff, Gerardo 1961 Agricultural Basis of the Sub-Andean Chiefdoms of Colombia. In The Evolution of Horticultural Systems in Native South America: Causes and Consequences, edited by Johannes Wilbert, pp. 83100. Sociedad de Ciencias Naturales La Salle, Caracas. Google Scholar
Rieth, Timothy M., and Stephen Athens, J. 2013 Suggested Best Practices for the Application of Radiocarbon Dating to Hawaiian Archaeology. Hawaiian Archaeology 13:329.Google Scholar
Salomon, Frank 1986 Native Lords of Quito in the Age of the Incas: The Political Economy of North Andean Chiefdoms. Cambridge University Press, New York.Google Scholar
Santos Vecino, Gustavo, Marin, Carlos Albeiro Monsalve, and Salas, Luz Victoria Correa 2015 Alteration of Tropical Forest Vegetation from the Pleistocene-Holocene Transition and Plant Cultivation from the End of Early Holocene Through Middle Holocene in Northwest Colombia. Quaternary International 363:2842.Google Scholar
Sauer, Walther 1965 Geología del Ecuador. Editorial del Ministerio de Educatión, Quito.Google Scholar
Sheppard, John C., Ali Syed, Y., and Mehringer, P. J. Jr. 1979 Radiocarbon Dating of Organic Components of Sediments and Peats. In Radiocarbon Dating, edited by Rainer Berger and Hans E. Suess, pp. 284305. University of California Press, Berkeley, California. Google Scholar
Stahl, Peter W., and Stephen Athens, J. 2001 A High Elevation Zooarchaeological Assemblage from the Northern Andes of Ecuador. Journal of Field Archaeology 28(1&2):161176.Google Scholar
Staller, John E., Tykot, Robert H., and Benz, Bruce F. (editors) 2006 Histories of Maize: Multidisciplinary Approaches to the Prehistory, Linguistics, Biogeography, Domestication, and Evolution of Maize. Elsevier, Burlington, Massachusetts.Google Scholar
Stuiver, Minze, and Reimer, Paula J. 1993 Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35(1):215230.Google Scholar
Telford, Richard J., Heegaard, E., and John, H. Birks, B. 2004 All Age-Depth Models Are Wrong: But How Badly? Quaternary Science Reviews 23:15.Google Scholar
Tykot, Robert H., Burger, Richard L., and van der Merwe, Nikolaas J. 2006 The Importance of Maize in Initial Period and Early Horizon Peru. In Histories of Maize: Multidisciplinary Approaches to the Prehistory, Linguistics, Biogeography, Domestication, and Evolution of Maize, edited by John E. Staller, Robert H. Tykot, and Bruce F. Benz, pp. 187197. Elsevier, Burlington, Massachusetts. Google Scholar
Ubelaker, Douglas H., Anne Katzenberg, M., and Doyon, Leon G. 1995 Status and Diet in Precontact Highland Ecuador. American Journal of Physical Anthropology 97:403411.Google Scholar
van Heerwaarden, Joost, Doebley, John, Briggs, William H., Glaubitz, Jeffrey C., Goodman, Major M., González, Jose de Jesus Sánchez, and Ross-Ibarra, Jeffrey 2011 Genetic Signals of Origin, Spread, and Introgression in a Large Sample of Maize Landraces. Proceedings of the National Academy of Sciences 108(3): 10881092.Google Scholar
Wernstedt, Frederick L. 1961 World Climatic Data, Volume 2, Latin America and the Caribbean. Edwards Brothers, Ann Arbor.Google Scholar
Zarrillo, Sonia 2012 Human Adaptation, Food Production, and Cultural Interaction during the Formative Period in Highland Ecuador. Unpublished PhD. Dissertation, Department of Archaeology, University of Calgary, Calgary, Alberta.Google Scholar
Zarrillo, Sonia, Pearsall, Deborah M., Scott Raymond, J., Tisdale, Mary Ann, and Quon, Dugane J. 2008 Directly Dated Starch Residues Document Early Formative Maize (Zea mays L.) in Tropical Ecuador. Proceedings of the National Academy of Sciences 105(13):50065011.Google Scholar